These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

131 related articles for article (PubMed ID: 410450)

  • 41. Association-dissociation modulation of enzyme activity: case of lactose synthase.
    Lambright DG; Lee TK; Wong SS
    Biochemistry; 1985 Feb; 24(4):910-4. PubMed ID: 3922406
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Short communication: effects of increased expression of alpha-lactalbumin in transgenic mice on milk yield and pup growth.
    Boston WS; Bleck GT; Conroy JC; Wheeler MB; Miller DJ
    J Dairy Sci; 2001 Mar; 84(3):620-2. PubMed ID: 11286415
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Modification of tyrosine residues in human alpha-lactalbumin: effect upon the lactose-synthase specifier activity.
    Prieels JP; Dolmans M; Léonis J; Brew K
    Arch Int Physiol Biochim; 1974 Dec; 82(5):1003-5. PubMed ID: 4142683
    [No Abstract]   [Full Text] [Related]  

  • 44. Reversible inactivation of lactose synthase by the modification of His 32 in human alpha-lactalbumin.
    Schindler M; Sharon N
    Biochem Biophys Res Commun; 1976 Mar; 69(1):167-73. PubMed ID: 816357
    [No Abstract]   [Full Text] [Related]  

  • 45. Comparative fluorescence properties of bovine, goat, human and guinea pig alpha lactalbumin. Characterization of the environments of individual tryptophan residues in partially folded conformers.
    Sommers PB; Kronman MJ
    Biophys Chem; 1980 Apr; 11(2):217-32. PubMed ID: 7370388
    [TBL] [Abstract][Full Text] [Related]  

  • 46. The lactose synthase acceptor site: a structural map derived from acceptor studies.
    Berliner LJ; Davis ME; Ebner KE; Beyer TA; Bell JE
    Mol Cell Biochem; 1984 Apr; 62(1):37-42. PubMed ID: 6429518
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Tryptophan modification by 2-hydroxy-5-nitrobenzyl bromide studied by MALDI-TOF mass spectrometry.
    Strohalm M; Kodícek M; Pechar M
    Biochem Biophys Res Commun; 2003 Dec; 312(3):811-6. PubMed ID: 14680838
    [TBL] [Abstract][Full Text] [Related]  

  • 48. The interaction of bovine milk galactosyltransferase with lipid and alpha-lactalbumin.
    Mitranic MM; Pâquet MR; Moscarello MA
    Biochim Biophys Acta; 1988 Oct; 956(3):277-84. PubMed ID: 3139038
    [TBL] [Abstract][Full Text] [Related]  

  • 49. A label selection procedure for determining the location of protein-protein interaction sites by cross-linking with bisimidoesters. Application to lactose synthase.
    Sinha SK; Brew K
    J Biol Chem; 1981 May; 256(9):4193-204. PubMed ID: 6783656
    [TBL] [Abstract][Full Text] [Related]  

  • 50. The chemical modification of tryptophan residues of alpha-mannosidase from Phaseolus vulgaris.
    Paus E
    Biochim Biophys Acta; 1978 Apr; 533(2):446-56. PubMed ID: 417737
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Hydrogen exchange of the tryptophan residues in bovine alpha-lactalbumin studied by UV spectroscopy.
    Harushima Y; Kuwajima K; Sugai S
    Biopolymers; 1988 Apr; 27(4):629-44. PubMed ID: 3370298
    [No Abstract]   [Full Text] [Related]  

  • 52. Substrate-dependent protein-protein interactions in the regulation of lactose synthase.
    Brew K; Powell JT
    Fed Proc; 1976 Jun; 35(8):1892-8. PubMed ID: 817946
    [No Abstract]   [Full Text] [Related]  

  • 53. Lactose synthase. An investigation of the interaction site of alpha-lactalbumin for galactosyltransferase by differential kinetic labeling.
    Richardson RH; Brew K
    J Biol Chem; 1980 Apr; 255(8):3377-85. PubMed ID: 6767715
    [No Abstract]   [Full Text] [Related]  

  • 54. Functional implications resulting from disruption of the calcium-binding loop in bovine alpha-lactalbumin.
    Berliner LJ; Meinholtz DC; Hirai Y; Musci G; Thompson MP
    J Dairy Sci; 1991 Aug; 74(8):2394-402. PubMed ID: 1918521
    [TBL] [Abstract][Full Text] [Related]  

  • 55. The interaction of N-acetylglucosamine and an affinity-label analogue with alpha-lactalbumin and lactose synthetase.
    Burkhardt AE; Russo SO; Rinehardt CG; Loudon GM
    Biochemistry; 1975 Dec; 14(25):5465-9. PubMed ID: 811254
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Studies on complex formation between alpha-lactalbumin and the UDPgalactose-glucose galactosyltransferase of the bovine lactose synthesizing enzyme.
    Schanbacher FL; Ebner KE
    Biochim Biophys Acta; 1971 Jan; 229(1):226-32. PubMed ID: 5101161
    [No Abstract]   [Full Text] [Related]  

  • 57. Functional consequences of tryptophan modification in human fibrinogen.
    Ishida Y; Takiuchi H; Matsushima A; Inada Y
    Biochim Biophys Acta; 1978 Sep; 536(1):70-7. PubMed ID: 101250
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Accessibility of tryptophan residues in immunoglobulin M as an index of its conformational changeability.
    Lapuk VA; Tchukhrova AI; Katiashvili NM; Shmakova FV; Kaverzneva ED; Timofeev VP
    J Biomol Struct Dyn; 1990 Dec; 8(3):709-20. PubMed ID: 1966064
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Role of tyrosine and tryptophan in chemically modified serum albumin on its tissue distribution.
    Ma SF; Nishikawa M; Yabe Y; Yamashita F; Hashida M
    Biol Pharm Bull; 2006 Sep; 29(9):1926-30. PubMed ID: 16946511
    [TBL] [Abstract][Full Text] [Related]  

  • 60. The bovine protein alpha-lactalbumin increases the plasma ratio of tryptophan to the other large neutral amino acids, and in vulnerable subjects raises brain serotonin activity, reduces cortisol concentration, and improves mood under stress.
    Markus CR; Olivier B; Panhuysen GE; Van Der Gugten J; Alles MS; Tuiten A; Westenberg HG; Fekkes D; Koppeschaar HF; de Haan EE
    Am J Clin Nutr; 2000 Jun; 71(6):1536-44. PubMed ID: 10837296
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.