These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

119 related articles for article (PubMed ID: 4104926)

  • 1. The importance of axoplasmic transport of amine granules for the functions of adrenergic neurons.
    Häggendal J; Dahlström A
    Acta Neuropathol; 1971; 5():Suppl 5:238-48. PubMed ID: 4104926
    [No Abstract]   [Full Text] [Related]  

  • 2. Axonal transport of amine storage granules in sympathetic adrenergic neurons.
    Dahlström A; Häggendal J
    Adv Biochem Psychopharmacol; 1970; 2():65-93. PubMed ID: 4108332
    [No Abstract]   [Full Text] [Related]  

  • 3. Fast axoplasmic transport in mammalian nerve in vitro after block of glycolysis with iodoacetic acid.
    Ochs S; Smith CB
    J Neurochem; 1971 Jun; 18(6):833-43. PubMed ID: 4105449
    [No Abstract]   [Full Text] [Related]  

  • 4. Axoplasmic flow in the wobbler mouse mutant.
    Bird MT; Shuttleworth EC
    Neurology; 1970 Apr; 20(4):395-6. PubMed ID: 4104902
    [No Abstract]   [Full Text] [Related]  

  • 5. Recovery of the amine uptake-storage mechanism in nerve granules after reserpine treatment: inhibition by axotomy.
    Andén NE; Lundborg P
    J Pharm Pharmacol; 1970 Mar; 22(3):233-5. PubMed ID: 4399497
    [No Abstract]   [Full Text] [Related]  

  • 6. Axoplasmic transport (with particular respect to adrenergic neurons).
    Dahlström A
    Philos Trans R Soc Lond B Biol Sci; 1971 Jun; 261(839):325-58. PubMed ID: 4111802
    [No Abstract]   [Full Text] [Related]  

  • 7. The recovery of the capacity for uptake-retention of ( 3 H)noradrenaline in rat adrenergic nerves after reserpine.
    Häggendal J; Dahlström A
    J Pharm Pharmacol; 1972 Jul; 24(7):565-74. PubMed ID: 4116402
    [No Abstract]   [Full Text] [Related]  

  • 8. Observations on axoplasmic transport in rabbits with aluminum-induced neurofibrillary tangles.
    Liwnicz BH; Kristensson K; Wiśniewski HM; Shelanski ML; Terry RD
    Brain Res; 1974 Nov; 80(3):413-20. PubMed ID: 4138808
    [No Abstract]   [Full Text] [Related]  

  • 9. Effects of vinblastine and colchicine on monoamine containing neurons of the rat, with special regard to the axoplasmic transport of amine granules.
    Dahlström A
    Acta Neuropathol; 1971; 5():Suppl 5:226-37. PubMed ID: 4104925
    [No Abstract]   [Full Text] [Related]  

  • 10. Dependence of fast axoplasmic transport in nerve on oxidative metabolism.
    Ochs S; Hollingsworth D
    J Neurochem; 1971 Jan; 18(1):107-14. PubMed ID: 4101219
    [No Abstract]   [Full Text] [Related]  

  • 11. Axonal reaction and axoplasmic flow as studies by radioautography.
    Francoeur J; Olszewski J
    Neurology; 1968 Feb; 18(2):178-84. PubMed ID: 5688759
    [No Abstract]   [Full Text] [Related]  

  • 12. The effect of different types of axonal trauma on the synthesis and transport of amine storage granules in rat sciatic nerves.
    Karlström L; Dahlström A
    J Neurobiol; 1973; 4(3):191-200. PubMed ID: 4123679
    [No Abstract]   [Full Text] [Related]  

  • 13. Rapid phase of axoplasmic flow and synaptic proteins: an electron microscopical autoradiographic study.
    Schonbach J; Schonbach C; Cuénoid M
    J Comp Neurol; 1971 Apr; 141(4):485-97. PubMed ID: 4101681
    [No Abstract]   [Full Text] [Related]  

  • 14. Noradrenaline and dopamine-beta-hydroxylase levels in rat salivary glands after preganglionic nerve stimulation: evidence for re-use of amine storage granules in transmitter release.
    Häggendal J
    J Neural Transm; 1982; 53(2-3):147-58. PubMed ID: 6281379
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Importance of axonal transport of new amine granules for 3 H-noradrenaline retention capacity of adrenergic nerve terminals.
    Häggendal J; Dahlström A
    Acta Physiol Pol; 1973; 24(1):185-92. PubMed ID: 4351939
    [No Abstract]   [Full Text] [Related]  

  • 16. The effect of nerve stimulation on the axonal transport of noradrenaline and dopamine-beta-hydroxylase.
    Keen P; McLean WG
    Br J Pharmacol; 1974 Dec; 52(4):527-31. PubMed ID: 4141914
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Axoplasmic streaming and proteins in th retino-tectal neurons of the pigeon.
    Schonbach J; Cuénod M
    Acta Neuropathol; 1971; 5():Suppl 5:153-61. PubMed ID: 4104920
    [No Abstract]   [Full Text] [Related]  

  • 18. Some aspects of the release of the adrenergic transmitter.
    Häggendal J
    J Neural Transm; 1974; Suppl 11(0):135-61. PubMed ID: 4138049
    [No Abstract]   [Full Text] [Related]  

  • 19. Immunocytochemical studies on axonal transport in adrenergic and cholinergic nerves using cytofluorimetric scanning.
    Dahlström A; Larsson PA; Goldstein M; Lundmark K; Dahllöf AG; Bööj S
    Med Biol; 1986; 64(2-3):49-56. PubMed ID: 2875231
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Differential accumulation of various enzymes in constricted sciatic nerves.
    Laduron P
    Arch Int Pharmacodyn Ther; 1970 May; 185(1):200-3. PubMed ID: 4097101
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 6.