These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

123 related articles for article (PubMed ID: 4109298)

  • 21. Disappearance of particulate tectal protein during optic nerve degeneration in the pigeon.
    Cuénod M; Marko P; Niederer E
    Brain Res; 1973 Jan; 49(2):422-6. PubMed ID: 4124399
    [No Abstract]   [Full Text] [Related]  

  • 22. Rapid axonal transport of phosphatidylinositol in the rabbit optic pathway.
    Alberghina M; Viola M; Giuffrida AM
    J Neurosci Res; 1981; 6(6):723-31. PubMed ID: 6174735
    [No Abstract]   [Full Text] [Related]  

  • 23. The effects of colchicine and lumicolchicine on the rapid phase of axonal transport in the rabbit visual system.
    Price MT
    Brain Res; 1974 Sep; 77(3):497-501. PubMed ID: 4137261
    [No Abstract]   [Full Text] [Related]  

  • 24. Growth hormone and its receptor in projection neurons of the chick visual system: retinofugal and tectobulbar tracts.
    Baudet ML; Rattray D; Harvey S
    Neuroscience; 2007 Aug; 148(1):151-63. PubMed ID: 17618059
    [TBL] [Abstract][Full Text] [Related]  

  • 25. The extent of axoplasmic transport during development, determined by migration of various radioactively-labelled materials.
    Bondy SC; Madsen CJ
    J Neurochem; 1974 Nov; 23(5):905-10. PubMed ID: 4140218
    [No Abstract]   [Full Text] [Related]  

  • 26. Axonal migration of various ribonucleic acid species along the optic tract of the chick.
    Bondy SC
    J Neurochem; 1972 Jul; 19(7):1769-76. PubMed ID: 4114449
    [No Abstract]   [Full Text] [Related]  

  • 27. Dynamic properties of axonal transport of proteins and glycoproteins: a study based on the effects of metaphase blocking drugs in the developing optic pathway of chick embryos.
    Gremo F; Marchisio PC
    Cell Tissue Res; 1975 Aug; 161(3):303-16. PubMed ID: 51686
    [TBL] [Abstract][Full Text] [Related]  

  • 28. The development of the nucleus of origin of centrifugal fibers to the retina in the chick.
    Cowan WM; Wenger E
    J Comp Neurol; 1968 Jun; 133(2):207-40. PubMed ID: 5680003
    [No Abstract]   [Full Text] [Related]  

  • 29. Tenascin in the developing chick visual system: distribution and potential role as a modulator of retinal axon growth.
    Perez RG; Halfter W
    Dev Biol; 1993 Mar; 156(1):278-92. PubMed ID: 7680630
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Transport of radioactivity from eye to visual cortex in the mouse.
    Grafstein B; Laureno R
    Exp Neurol; 1973 Apr; 39(1):44-57. PubMed ID: 4121484
    [No Abstract]   [Full Text] [Related]  

  • 31. Expression of presynaptic proteins is closely correlated with the chronotopic pattern of axons in the retinotectal system of the chick.
    Bergmann M; Grabs D; Rager G
    J Comp Neurol; 2000 Mar; 418(3):361-72. PubMed ID: 10701832
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Kinetic properties of the GABA uptake system in cultures of chick retina.
    Tunnicliff G; Cho YD; Martin RO
    Neurobiology; 1974; 4(1):38-42. PubMed ID: 4132392
    [No Abstract]   [Full Text] [Related]  

  • 33. Development of the optic afferent system in chick embryos.
    Sedlácek J
    Adv Psychobiol; 1972; 1():129-70. PubMed ID: 4269751
    [No Abstract]   [Full Text] [Related]  

  • 34. [Effect of intermittent illumination on the mitotic activity of the retinal cells and the optic lobe of chick embryos].
    Manuilova NA; Babicheva RN; Popov VV
    Dokl Akad Nauk SSSR; 1966 Sep; 170(1):223-6. PubMed ID: 5995927
    [No Abstract]   [Full Text] [Related]  

  • 35. Axonal transport, deposition, and metabolic turnover of glycoproteins in the rat optic pathway.
    Goodrum JF; Morell P
    J Neurochem; 1982 Mar; 38(3):696-704. PubMed ID: 6173464
    [No Abstract]   [Full Text] [Related]  

  • 36. [Study of several aspects of metabolism of glucose and glutamic acid at the level of the optic lobe in the chick during embryonic development].
    Schwander J
    Arch Sci Physiol (Paris); 1968; 22(1):137-71. PubMed ID: 5658113
    [No Abstract]   [Full Text] [Related]  

  • 37. Axonal transport of macromolecules. I. Protein migration in the central nervous system.
    Bondy SC
    Exp Brain Res; 1971; 13(2):127-34. PubMed ID: 4105657
    [No Abstract]   [Full Text] [Related]  

  • 38. Some observations on the early development of the optic tectum in the frog (Rana pipiens), with special reference to the effects of early eye removal on mitotic activity in the larval tectum.
    Currie J; Cowan WM
    J Comp Neurol; 1974 Jul; 156(2):123-41. PubMed ID: 4547356
    [No Abstract]   [Full Text] [Related]  

  • 39. Growth interactions between regenerating axons and tectal cells during optic nerve regeneration reveal two stages in retinotectal pattern formation.
    Cronly-Dillon J; Birks C
    Birth Defects Orig Artic Ser; 1983; 19(4):485-9. PubMed ID: 6191795
    [No Abstract]   [Full Text] [Related]  

  • 40. Restricted distribution of D-unit-rich chondroitin sulfate carbohydrate chains in the neuropil encircling the optic tract and on a subset of retinal axons in chick embryos.
    Ichijo H
    J Comp Neurol; 2006 Apr; 495(4):470-9. PubMed ID: 16485291
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.