These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

128 related articles for article (PubMed ID: 4110620)

  • 1. Transfer of material from efferent axons to sensory epithelium in the goldfish vestibular system.
    Alvarez J; Püschel M
    Brain Res; 1972 Feb; 37(2):265-78. PubMed ID: 4110620
    [No Abstract]   [Full Text] [Related]  

  • 2. Axonal transport of S-100 protein in mammalian nerve fibers.
    Miani N; De Renzis G; Michetti F; Correr S; Olivieri Sangiacomo C; Caniglia A
    J Neurochem; 1972 May; 19(5):1387-94. PubMed ID: 4112544
    [No Abstract]   [Full Text] [Related]  

  • 3. Metabolism of amino acids in incubated slices of mouse brain.
    Sadasivudu B; Lajtha A
    J Neurochem; 1970 Aug; 17(8):1299-311. PubMed ID: 5460305
    [No Abstract]   [Full Text] [Related]  

  • 4. Origin of efferent fibers of the vestibular apparatus in goldfish. A horseradish peroxidase study.
    Strutz J; Schmidt CL; Stürmer C
    Neurosci Lett; 1980 May; 18(1):5-9. PubMed ID: 6189014
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A basis for the difference in the inhibition of the uptake of various neutral amino acids by lysine in intestinal epithelial cells.
    Reiser S; Christiansen PA
    Biochim Biophys Acta; 1972 Apr; 266(1):217-29. PubMed ID: 5041088
    [No Abstract]   [Full Text] [Related]  

  • 6. Differential uptake of (3H)proline and (3H)leucine by neurons: its importance for the autoradiographic tracing on pathways.
    Künzle H; Cuénod M
    Brain Res; 1973 Nov; 62(1):213-7. PubMed ID: 4128805
    [No Abstract]   [Full Text] [Related]  

  • 7. Olivocerebellar projections in the cat studied by means of anterograde axonal transport of labelled amino acids as tracers.
    Kawamura K; Hashikawa T
    Neuroscience; 1979; 4(11):1615-33. PubMed ID: 92769
    [No Abstract]   [Full Text] [Related]  

  • 8. Species differences of serum amino acid beta-napthylamidases.
    Nagatsu I; Nagatsu T; Glenner GG
    Enzymologia; 1968 Feb; 34(2):73-6. PubMed ID: 4968771
    [No Abstract]   [Full Text] [Related]  

  • 9. [On protein transport in the axons of the acoustic nerve].
    Haubrich J; Koburg E
    Arch Klin Exp Ohren Nasen Kehlkopfheilkd; 1967; 188(2):476-80. PubMed ID: 5599780
    [No Abstract]   [Full Text] [Related]  

  • 10. Changes in the morphology and amino acid incorporation of regenerating goldfish optic neurons.
    Murray M; Grafstein B
    Exp Neurol; 1969 Apr; 23(4):544-60. PubMed ID: 5783188
    [No Abstract]   [Full Text] [Related]  

  • 11. Neuroplasmic transport in the nervous system of the cockroach Periplaneta americana.
    Smith BH
    J Neurobiol; 1971; 2(2):107-18. PubMed ID: 4110582
    [No Abstract]   [Full Text] [Related]  

  • 12. Components of fast and slow axonal transport in the goldfish optic nerve.
    McEwen BS; Forman DS; Grafstein B
    J Neurobiol; 1971; 2(4):361-77. PubMed ID: 4109251
    [No Abstract]   [Full Text] [Related]  

  • 13. [Vestibular efferent neurons of the guinea pig forming projections into the saccule].
    Shumilina VF; Preobrazhenskiĭ NN
    Neirofiziologiia; 1990; 22(5):657-65. PubMed ID: 1702187
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Frozen-section autoradiography of the cochlea: evidence for differential distribution of amino acids.
    Martin GK; Wise RP; Lonsbury-Martin BL
    Ann Otol Rhinol Laryngol; 1983; 92(3 Pt 1):254-8. PubMed ID: 6190424
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Distribution of primary vestibular fibers in the brainstem and cerebellum of the monkey.
    Carleton SC; Carpenter MB
    Brain Res; 1984 Mar; 294(2):281-98. PubMed ID: 6200186
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Transport of s-100 protein in mammalian nerve fibers and transneuronal signals.
    Miani N
    Acta Neuropathol; 1971; 5():Suppl 5:104-8. PubMed ID: 5562683
    [No Abstract]   [Full Text] [Related]  

  • 17. Distribution of calcitonin gene-related peptide immunoreactivity in vestibular efferent neurons of the chinchilla.
    Marco RA; Hoffman LF; Wackym PA; Micevych PE; Popper P
    Hear Res; 1996 Aug; 97(1-2):95-101. PubMed ID: 8844190
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Presence of synapsin I in afferent and efferent nerve endings of vestibular sensory epithelia.
    Favre D; Scarfone E; Di Gioia G; De Camilli P; Dememes D
    Brain Res; 1986 Oct; 384(2):379-82. PubMed ID: 3096490
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Stimulation of basic amino acid uptake by certain neutral amino acids in isolated intestinal epithelial cells.
    Reiser S; Christiansen PA
    Biochim Biophys Acta; 1971 Jul; 241(1):102-13. PubMed ID: 5125239
    [No Abstract]   [Full Text] [Related]  

  • 20. [Comparative autoradiographic investigations on the protein metabolism of the cochlea and of the equilibrium mechanism].
    Schreiner L
    Arch Ohren Nasen Kehlkopfheilkd; 1965; 185(2):645-51. PubMed ID: 4160349
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 7.