These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

94 related articles for article (PubMed ID: 4110770)

  • 1. Stereochemistry of the active site of -chymotrypsin. The effect of some tricyclic bromomethyl ketones on -chymotrypsin.
    Pattabiraman TN; Lawson WB
    Biochim Biophys Acta; 1972 Feb; 258(2):548-53. PubMed ID: 4110770
    [No Abstract]   [Full Text] [Related]  

  • 2. Inactivation of alpha-chymotrypsin by a bifunctional reagent, 2-bromomethyl-3, I-benzoxazin-4-one.
    Alazard R; Béchet JJ; Dupaix A; Yon J
    Biochim Biophys Acta; 1973 Jun; 309(2):379-96. PubMed ID: 4731968
    [No Abstract]   [Full Text] [Related]  

  • 3. The reactivity of His-57 in chymotrypsin to alkylation.
    Shaw E; Ruscica J
    Arch Biochem Biophys; 1971 Aug; 145(2):484-9. PubMed ID: 5132101
    [No Abstract]   [Full Text] [Related]  

  • 4. Structural and steric specificity of alpha-chloroketones as inhibitors of alpha-chymotrypsin.
    Kumar S; Hein GE
    Biochim Biophys Acta; 1970 Jun; 206(3):404-13. PubMed ID: 5459549
    [No Abstract]   [Full Text] [Related]  

  • 5. Inactivation of alpha-chymotrypsin by a bifunctional reagent, 3,4-dihydro-3,4-dibromo-6-bromomethylcoumarin.
    Béchet JJ; Dupaix A; Yon J; Wakselman M; Robert JC; Vilkas M
    Eur J Biochem; 1973 Jun; 35(3):527-39. PubMed ID: 4730954
    [No Abstract]   [Full Text] [Related]  

  • 6. Chloroketone hydrolysis by chymotrypsin and N-methylhistidyl-57-chymotrypsin: implications for the mechanism of chymotrypsin inactivation by chloroketones.
    Prorok M; Albeck A; Foxman BM; Abeles RH
    Biochemistry; 1994 Aug; 33(32):9784-90. PubMed ID: 8068658
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Specific modification of methionine-192 of -chymotrypsin by an affinity label exploiting the orienting properties of the linear acetylenic group.
    Jones JB; Hysert DW
    Biochemistry; 1972 Jul; 11(14):2726-33. PubMed ID: 5045526
    [No Abstract]   [Full Text] [Related]  

  • 8. Oxazaborolidinone-catalyzed enantioselective Friedel-Crafts alkylation of furans and indoles with alpha,beta-unsaturated ketones.
    Adachi S; Tanaka F; Watanabe K; Harada T
    Org Lett; 2009 Nov; 11(22):5206-9. PubMed ID: 19856925
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The stereochemistry of substrate binding to chymotrypsin A .
    Segal DM; Cohen CH; Davies DR; Powers JC; Wilcox PE
    Cold Spring Harb Symp Quant Biol; 1972; 36():85-90. PubMed ID: 4508176
    [No Abstract]   [Full Text] [Related]  

  • 10. Organocatalytic asymmetric Friedel-Crafts alkylation/cascade reactions of naphthols and nitroolefins.
    Liu TY; Cui HL; Chai Q; Long J; Li BJ; Wu Y; Ding LS; Chen YC
    Chem Commun (Camb); 2007 Jun; (22):2228-30. PubMed ID: 17534499
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The inhibition of chymotrypsin A4 and B with chloromethyl ketone reagents.
    Stevenson KJ; Smillie LB
    Can J Biochem; 1968 Nov; 46(11):1357-70. PubMed ID: 5687069
    [No Abstract]   [Full Text] [Related]  

  • 12. Stereochemistry of the active site of alpha-chymotrypsin. The binding geometry of tryptophan derivatives.
    Hayashi Y; Lawson WB
    J Biol Chem; 1969 Aug; 244(15):4158-67. PubMed ID: 5800437
    [No Abstract]   [Full Text] [Related]  

  • 13. Correlations of the basicity of His 57 with transition state analogue binding, substrate reactivity, and the strength of the low-barrier hydrogen bond in chymotrypsin.
    Lin J; Cassidy CS; Frey PA
    Biochemistry; 1998 Aug; 37(34):11940-8. PubMed ID: 9718318
    [TBL] [Abstract][Full Text] [Related]  

  • 14. THE IDENTIFICATION OF THE HISTIDINE RESIDUE AT THE ACTIVE CENTER OF CHYMOTRYPSIN.
    ONG EB; SHAW E; SCHOELLMANN G
    J Biol Chem; 1965 Feb; 240():694-8. PubMed ID: 14275123
    [No Abstract]   [Full Text] [Related]  

  • 15. Stereochemistry of the active site of -chymotrypsin. The influence of polar groups in locked substrates.
    Pattabiraman TN; Lawson WB
    J Biol Chem; 1972 May; 247(10):3029-38. PubMed ID: 5027740
    [No Abstract]   [Full Text] [Related]  

  • 16. Chiral tertiary 2-furyl alcohols: diversified key intermediates to bioactive compounds. Their enantioselective synthesis via (2-furyl)aluminium addition to ketones catalyzed by a titanium catalyst of (S)-BINOL.
    Wu KH; Chuang DW; Chen CA; Gau HM
    Chem Commun (Camb); 2008 May; (20):2343-5. PubMed ID: 18473064
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A common size parameter for hydrophobic binding of inhibitors by alpha-chymotrypsin, alkylated alpha-chymotrypsin, and yeast alcohol dehydrogenase.
    Royer G; Canady WJ
    Arch Biochem Biophys; 1968 Mar; 124(1):530-4. PubMed ID: 5661622
    [No Abstract]   [Full Text] [Related]  

  • 18. On the active site of alpha-chymotrypsin. Absolute configurations and kinetics of hydrolysis of cyclized and noncyclized substrates.
    Cohen SG; Milovanović A; Schultz RM; Weinstein SY
    J Biol Chem; 1969 May; 244(10):2664-74. PubMed ID: 4181514
    [No Abstract]   [Full Text] [Related]  

  • 19. Identification of the trypsin-reactive site of the Bowman-Birk soybean inhibitor.
    Seidl DS; Liener IE
    Biochim Biophys Acta; 1971 Oct; 251(1):83-93. PubMed ID: 5167322
    [No Abstract]   [Full Text] [Related]  

  • 20. Noncovalent bonding of the competitive inhibitor -naphthol to -chymotrypsin.
    Levashov AV; Martinek K; Strel'tsova ZA; Shashkova EA; Berezin IV
    Mol Biol; 1971; 5(2):154-8. PubMed ID: 5154811
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 5.