These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

75 related articles for article (PubMed ID: 411143)

  • 1. Effect of tannic acid on excitation-contraction coupling in skeletal muscle.
    Bonciocat C
    Physiologie; 1977; 14(3):179-84. PubMed ID: 411143
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effects of 4-aminopyridine on the excitation-contraction coupling in frog and rat skeletal muscle.
    Khan AR; Edman KA
    Acta Physiol Scand; 1979 Apr; 105(4):443-52. PubMed ID: 313138
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The action of benzalkonium chloride on the activation of contraction in frog skeletal muscle.
    Bonciocat C
    Physiologie; 1975; 12(3):215-20. PubMed ID: 812123
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effect of ruthenium red on excitation-contraction coupling in frog skeletal muscle.
    Suzuki T; Obara K; Nagai T
    Jpn J Physiol; 1980; 30(1):49-59. PubMed ID: 6155498
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Differential effects of glycerol treatment on membrane capacity and excitation-contraction coupling in toad sartorius fibres.
    Dulhunty AF; Gage PW
    J Physiol; 1973 Oct; 234(2):373-408. PubMed ID: 4203309
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effects of diethyl-stilboestrol on single fibres of frog skeletal muscle.
    Khan AR
    Acta Physiol Scand; 1979 May; 106(1):69-73. PubMed ID: 313661
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effects of amrinone on the electromechanical coupling in frog skeletal muscle fibres.
    Mörner SE; Månsson A
    Acta Physiol Scand; 1990 Jun; 139(2):289-95. PubMed ID: 2368618
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [Influence of homologous n-alcanoic acids on the function properties of isolated skeletal muscles. III. Contractures by fatty acids and relations to the effects of caffeine].
    Kössler F; Küchler G
    Acta Biol Med Ger; 1977; 36(7-8):1085-95. PubMed ID: 306181
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A local anesthetic, tetracaine, similarly inhibits Ag+ and K+ contractures in frog skeletal muscle.
    Oba T; Aoki T; Liu GH; Hotta K
    Jpn J Physiol; 1987; 37(6):995-1003. PubMed ID: 3502655
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effects of hypertonicity on frog muscle contractures induced by quinine.
    Coutinho S; Braga-da-Costa MJ; Suarez-Kurtz G
    Braz J Med Biol Res; 1982 Oct; 15(4-5):275-80. PubMed ID: 7182028
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A comparison of the effects of cationic, anionic, and neutral amphipathic agents on the contractile behaviour of frog skeletal muscle. I. Twitches and potential threshold for contraction.
    Foulks JG; Morishita L
    Can J Physiol Pharmacol; 1984 Nov; 62(11):1348-55. PubMed ID: 6334546
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mechanical threshold as a factor in excitation-contraction coupling.
    Taylor SR; Preiser H; Sandow A
    J Gen Physiol; 1969 Sep; 54(3):352-68. PubMed ID: 5806594
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [The effect of hypertonic solutions on contracture of a tonic muscle fiber].
    Nasledov GA; Radziukevich TL
    Tsitologiia; 1975 Dec; 17(12):1383-8. PubMed ID: 1085048
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Increased sensitivity of frog skeletal muscle to procaine in the presence of organic anions.
    Foulks JG; Perry FA
    Can J Physiol Pharmacol; 1978 Oct; 56(5):739-46. PubMed ID: 709415
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The steps between depolarization and the increase in the respiration of frog skeletal muscle.
    van der Kloot W
    J Physiol; 1969 Oct; 204(3):551-69. PubMed ID: 4241910
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Inhibitory effects of (+/-)-propranolol on excitation-contraction coupling in isolated soleus muscles of the rat.
    Ha TN; Fryer MW
    Br J Pharmacol; 1997 Oct; 122(3):463-8. PubMed ID: 9351502
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The relation between external potassium concentration and the relaxation rate of potassium-induced contractures in frog skeletal muscle.
    Foulks JG; Perry FA
    J Physiol; 1966 Oct; 186(2):243-60. PubMed ID: 5972109
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Ruthenium red: differential effects on excitation and excitation-contraction coupling in frog skeletal muscle.
    Snowdowne KW; Howell JN
    J Muscle Res Cell Motil; 1984 Aug; 5(4):399-410. PubMed ID: 6207202
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [Effect of omega-H-perfluorinated carbonic acids on the wet weight, membrane potential and contractility of isolated skeletal muscle].
    Kössler F
    Acta Biol Med Ger; 1978; 37(8):1237-42. PubMed ID: 749460
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Excitation-contraction coupling in skeletal muscle: blockade by high extracellular concentrations of calcium buffers.
    Barrett N; Barrett EF
    Science; 1978 Jun; 200(4347):1270-2. PubMed ID: 96524
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.