These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
75 related articles for article (PubMed ID: 411143)
21. Influence of ethanol and acetaldehyde on electro-mechanical coupling of skeletal muscle fibers. Khan AR Acta Physiol Scand; 1981 Apr; 111(4):425-30. PubMed ID: 6975552 [TBL] [Abstract][Full Text] [Related]
22. Modulation of caffeine contractures in mammalian skeletal muscles by variation of extracellular potassium. Gallant EM; Lentz LR; Taylor SR J Cell Physiol; 1995 Nov; 165(2):254-60. PubMed ID: 7593203 [TBL] [Abstract][Full Text] [Related]
23. Modulation by adrenaline of electrophysiological membrane parameters and contractility in intact and internally perfused single muscle fibres of the crayfish. Zacharová D; Lipská E; Hencek M; Hochmannová J; Sajter V Gen Physiol Biophys; 1993 Dec; 12(6):543-77. PubMed ID: 8070646 [TBL] [Abstract][Full Text] [Related]
24. Effects of ruthenium red on excitation and contraction in muscle fibres with Ca2+ electrogenesis. Zacharová D; Uhrík B; Hencek M; Lipskaja E; Pavelková J Gen Physiol Biophys; 1990 Dec; 9(6):545-68. PubMed ID: 1706675 [TBL] [Abstract][Full Text] [Related]
25. Effect of angiotensin II on mechanical and electrical responses of frog, chick and rat skeletal muscle. Wali FA Arch Int Pharmacodyn Ther; 1986 Aug; 282(2):314-27. PubMed ID: 3767530 [TBL] [Abstract][Full Text] [Related]
26. Effects of external calcium deprivation on single muscle fibers. Caputo C; Gimenez M J Gen Physiol; 1967 Oct; 50(9):2177-95. PubMed ID: 6064147 [TBL] [Abstract][Full Text] [Related]
27. Sulfhydryls on frog skeletal muscle membrane participate in contraction. Oba T; Yamaguchi M Am J Physiol; 1990 Nov; 259(5 Pt 1):C709-14. PubMed ID: 2240191 [TBL] [Abstract][Full Text] [Related]
28. The effect of low concentrations of sodium dodecyl-sulfate on 45Ca release in frog skeletal muscle. Bonciocat C; Ciuntu L Physiologie; 1980; 17(1):67-75. PubMed ID: 6767257 [TBL] [Abstract][Full Text] [Related]
29. Nickel substitution for calcium in excitation-contraction coupling of skeletal muscle. Fischman DA; Swan RC J Gen Physiol; 1967 Jul; 50(6):1709-28. PubMed ID: 4227212 [TBL] [Abstract][Full Text] [Related]
30. Enantiomeric effects on excitation-contraction coupling in frog skeletal muscle by a chiral phenoxy carboxylic acid. Heiny JA; Jong D; Bryant SH; Conte-Camerino D; Tortorella V Biophys J; 1990 Jan; 57(1):147-52. PubMed ID: 2297560 [TBL] [Abstract][Full Text] [Related]
31. Local activation of frog muscle fibres with linearly rising currents. Sugi H J Physiol; 1968 Dec; 199(3):549-67. PubMed ID: 5710422 [TBL] [Abstract][Full Text] [Related]
32. Action of tannic acid on frog muscle. Gladwell RT; Bowler K; Duncan CJ Biochem Pharmacol; 1971 Oct; 20(10):2879-84. PubMed ID: 5114520 [No Abstract] [Full Text] [Related]
33. The effects of temperature, local anaesthetics, pH, divalent cations, and group-specific reagents on repriming and repolarization-induced contractures in frog skeletal muscle. Foulks JG; Perry FA Can J Physiol Pharmacol; 1979 Jun; 57(6):619-30. PubMed ID: 39672 [TBL] [Abstract][Full Text] [Related]
34. The potentiation of potassium contractures by sodium dodecyl-sulfate: a Ca-dependent facilitation of excitation-contraction coupling. Bonciocat C Neurol Psychiatr (Bucur); 1979; 17(3):147-57. PubMed ID: 315608 [No Abstract] [Full Text] [Related]
36. Effects of repetitive activity, ruthenium red, and elevated extracellular calcium on frog skeletal muscle: implications for t-tubule conduction. Howell JN; Oetliker H Can J Physiol Pharmacol; 1987 Apr; 65(4):691-6. PubMed ID: 2440544 [TBL] [Abstract][Full Text] [Related]
37. A comparison of the effects of cationic, anionic, and neutral amphipathic agents on the contractile behaviour of frog skeletal muscle. II. Amplitude of depolarization and repolarization-induced contractures. Foulks JG; Morishita L Can J Physiol Pharmacol; 1984 Nov; 62(11):1356-64. PubMed ID: 6509383 [TBL] [Abstract][Full Text] [Related]
38. Persistence of excitation contraction coupling in "slow" muscle fibres after a treatment that destroys transverse tubules in "twitch" fibres. Stefani E; Steinbach A Nature; 1968 May; 218(5142):681-2. PubMed ID: 5655960 [No Abstract] [Full Text] [Related]
39. Some limitations of the use of tannic acid as a marker of damaged skeletal muscle fibres. Cottell DC; Hooper AC J Microsc; 1985 Sep; 139(Pt 3):331-4. PubMed ID: 2416938 [TBL] [Abstract][Full Text] [Related]
40. On the mechanism of inactivation of Chikungunya virus by tannic acid. Konishi E; Hotta S Microbiol Immunol; 1980; 24(9):847-59. PubMed ID: 7219208 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]