These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

182 related articles for article (PubMed ID: 4113125)

  • 41. Immunochemical evidence for the participation of cytochrome b5 in the NADH synergism of the NADPH-dependent mono-oxidase system of hepatic microsomes.
    Mannering GJ; Kuwahara S; Omura T
    Biochem Biophys Res Commun; 1974 Mar; 57(2):476-81. PubMed ID: 4151403
    [No Abstract]   [Full Text] [Related]  

  • 42. Intracellular site of synthesis of microsomal heme oxygenase in pig spleen.
    Shibahara S; Yoshida T; Kikuchi G
    J Biochem; 1980 Jul; 88(1):45-50. PubMed ID: 6893322
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Evidence against a regulatory role for heme oxygenase in hepatic heme synthesis.
    Rothwell JD; Lacroix S; Sweeney GD
    Biochim Biophys Acta; 1973 May; 304(3):871-4. PubMed ID: 4726863
    [No Abstract]   [Full Text] [Related]  

  • 44. Preparation of antisera against cytochrome b 5 and NADPH-cytochrome c reductase from rat liver microsomes.
    Raftell M; Orrenius S
    Biochim Biophys Acta; 1971 Apr; 233(2):358-65. PubMed ID: 4397735
    [No Abstract]   [Full Text] [Related]  

  • 45. Liver microsomal electron transport systems. II. The involvement of cytochrome b5 in the NADH-dependent hydroxylation of 3,4-benzpyrene by a reconstituted cytochrome P-448-containing system.
    West SB; Levin W; Ryan D; Vore M; Lu AY
    Biochem Biophys Res Commun; 1974 May; 58(2):516-522. PubMed ID: 4366168
    [No Abstract]   [Full Text] [Related]  

  • 46. Identification of heme oxygenase and cytochrome P-450 in the rabbit heart.
    Abraham NG; Pinto A; Levere RD; Mullane K
    J Mol Cell Cardiol; 1987 Jan; 19(1):73-81. PubMed ID: 3550106
    [TBL] [Abstract][Full Text] [Related]  

  • 47. The occurrence of molecular interactions among NADPH-cytochrome c reductase, heme oxygenase, and biliverdin reductase in heme degradation.
    Yoshinaga T; Sassa S; Kappas A
    J Biol Chem; 1982 Jul; 257(13):7786-93. PubMed ID: 6806283
    [No Abstract]   [Full Text] [Related]  

  • 48. Identification of the product of heme degradation catalyzed by the heme oxygenase system as biliverdin IX alpha by reversed-phase high-performance liquid chromatography.
    Noguchi M; Yoshida T; Kikuchi G
    J Biochem; 1982 May; 91(5):1479-83. PubMed ID: 6896513
    [TBL] [Abstract][Full Text] [Related]  

  • 49. The possible involvement of cytochrome b5 in the oxidation of lauric acid by microsomes from kidney cortex and liver of rats.
    Sasame HA; Thorgeirsson SS; Mitchell JR; Gillette JR
    Life Sci; 1974 Jan; 14(1):35-46. PubMed ID: 4129689
    [No Abstract]   [Full Text] [Related]  

  • 50. Activity of microsomal heme oxygenase in liver and spleen of ascorbic acid-deficient guinea pigs.
    Walsch S; Degkwitz E
    Hoppe Seylers Z Physiol Chem; 1980 Aug; 361(8):1243-9. PubMed ID: 6893316
    [TBL] [Abstract][Full Text] [Related]  

  • 51. CO-binding pigment (P-450) and other electron transport components in hepatoma bearing rats.
    Brown HD; Morris HP; Chattopadhyay SK; Patel AB; Pennington SN
    Experientia; 1969 Apr; 25(4):358-9. PubMed ID: 4389706
    [No Abstract]   [Full Text] [Related]  

  • 52. Interactions of spironolactone with hepatic microsomal drug-metabolizing enzyme systems.
    Feller DR; Gerald MC
    Biochem Pharmacol; 1971 Aug; 20(8):1991-2000. PubMed ID: 4400282
    [No Abstract]   [Full Text] [Related]  

  • 53. The reaction of nitro and azo compounds by housefly microsomes.
    Shargel L; Akov S; Mazel P
    J Agric Food Chem; 1972; 20(1):27-9. PubMed ID: 4400647
    [No Abstract]   [Full Text] [Related]  

  • 54. Heme catabolism by the reconstituted heme oxygenase system.
    Kikuchi G; Yoshida T
    Ann Clin Res; 1976; 8 Suppl 17():10-7. PubMed ID: 827230
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Reaction of the microsomal heme oxygenase with cobaltic protoporphyrin IX, and extremely poor substrate.
    Yoshida T; Kikuchi G
    J Biol Chem; 1978 Dec; 253(23):8479-82. PubMed ID: 101544
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Microsomal electron transport. II. Reduced nicotinamide adenine dinucleotide--cytochrome b5 reductase and cytochrome P-450 as electron carriers in microsomal NADH-peroxidase activity.
    Hrycay EG; O'Brien PJ
    Arch Biochem Biophys; 1974 Jan; 160(1):230-45. PubMed ID: 4151324
    [No Abstract]   [Full Text] [Related]  

  • 57. Interaction of purified microsomal cytochrome P-450 with cytochrome b5.
    Chiang JY
    Arch Biochem Biophys; 1981 Oct; 211(2):662-73. PubMed ID: 6171203
    [No Abstract]   [Full Text] [Related]  

  • 58. [Occurrence of 2 b5 cytochromes in rat liver microsomes].
    Archakov AI; Devichenskiĭ VM; Severina VA
    Biokhimiia; 1969; 34(4):782-90. PubMed ID: 4391111
    [No Abstract]   [Full Text] [Related]  

  • 59. Microsomal mixed-function oxidations: the metabolism of xenobiotics.
    Mason HS; North JC; Vanneste M
    Fed Proc; 1965; 24(5):1172-80. PubMed ID: 4378722
    [No Abstract]   [Full Text] [Related]  

  • 60. Microsomal styrene mono-oxygenase and styrene epoxide hydrase activities in rats.
    Salmona M; Pachecka J; Cantoni L; Belvedere G; Mussini E; Garattini S
    Xenobiotica; 1976 Oct; 6(10):585-91. PubMed ID: 10684
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.