These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

118 related articles for article (PubMed ID: 4114422)

  • 1. A microfluorometric study of masked metachromasia in cells of the endocrine polypeptide (APUD) series.
    Maunder C; Rost FW
    Histochem J; 1972 Mar; 4(2):145-53. PubMed ID: 4114422
    [No Abstract]   [Full Text] [Related]  

  • 2. An improved method for staining cells of the endocrine polypeptide (APUD) series by masked metachromasia: application of the principle of 'fixation by excluded volume'.
    Cecilia M; Rost M; Rost FW
    Histochem J; 1976 Jan; 8(1):93-8. PubMed ID: 57952
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Lead-haematoxylin as a stain for endocrine cells. Significance of staining and comparison with other selective methods.
    Solcia E; Capella C; Vassallo G
    Histochemie; 1969; 20(2):116-26. PubMed ID: 4187889
    [No Abstract]   [Full Text] [Related]  

  • 4. Storage granules of thyroid C cells in the dog: a cytochemical and ultrastructural study, in relation to the masked metachromasia reaction.
    Rost MC; Rost FW
    Histochem J; 1975 Jul; 7(4):307-20. PubMed ID: 50304
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Fluorescence metachromasia in polypeptide hormone-producing cells of the APUD series, and its significance in relation to the structure of the precursor protein.
    Bussolati G; Rost FW; Pearse AG
    Histochem J; 1969 Nov; 1(6):517-30. PubMed ID: 4113291
    [No Abstract]   [Full Text] [Related]  

  • 6. Selective staining of endocrine cells by basic dyes after acid hydrolysis.
    Solcia E; Vassallo G; Capella C
    Stain Technol; 1968 Sep; 43(5):257-63. PubMed ID: 4176663
    [No Abstract]   [Full Text] [Related]  

  • 7. Common cytochemical and ultrastructural characteristics of cells producing polypeptide hormones (the APUD series) and their relevance to thyroid and ultimobranchial C cells and calcitonin.
    Pearse AG
    Proc R Soc Lond B Biol Sci; 1968 May; 170(1018):71-80. PubMed ID: 4384885
    [No Abstract]   [Full Text] [Related]  

  • 8. Fluorescence histochemical and microspectrofluorometric evidence of tryptophyl peptides in thyroid C cells of cat and pig.
    Håkanson R; Owman C; Sundler F
    J Histochem Cytochem; 1972 Mar; 20(3):205-10. PubMed ID: 5029135
    [No Abstract]   [Full Text] [Related]  

  • 9. Derivation of carboxyl groups for the 'masked metachromasia' of canine C cells by hydrolysis of polypeptides at the aspartyl group.
    Roediger WE
    Histochem J; 1977 Mar; 9(2):253-4. PubMed ID: 65346
    [No Abstract]   [Full Text] [Related]  

  • 10. Quinacrine affinity of endocrine cell systems containing dense core vesicles as visualized by fluorescence microscopy.
    Alund M; Olson L
    Cell Tissue Res; 1979 Dec; 204(2):171-86. PubMed ID: 394847
    [No Abstract]   [Full Text] [Related]  

  • 11. The variable refractivity of the protein or polypeptide hormone-producing cells showing a unique luminescence in the dark-field microscope.
    Takaya K
    Histochem J; 1976 Jan; 8(1):13-23. PubMed ID: 773909
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Selective localization of the parathyroid secretory protein-I/adrenal medulla chromogranin A protein family in a wide variety of endocrine cells of the rat.
    Cohn DV; Elting JJ; Frick M; Elde R
    Endocrinology; 1984 Jun; 114(6):1963-74. PubMed ID: 6233131
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Formaldehyde condensation at reduced temperature. Increased sensitivity and specificity of the fluorescence microscopic method for demonstrating primary catecholamines.
    Håkanson R; Sundler F
    J Histochem Cytochem; 1974 Sep; 22(9):887-94. PubMed ID: 4137674
    [No Abstract]   [Full Text] [Related]  

  • 14. Formaldehyde-induced fluorescence as a means for differentiating epinephrine cells from norepinephrine cells in adrenal medulla.
    Williams V; Morriss F
    Stain Technol; 1970 Sep; 45(5):205-13. PubMed ID: 4096993
    [No Abstract]   [Full Text] [Related]  

  • 15. Differentiation of noradrenaline and adrenaline containing cells in the adrenal medulla by the trihydroxyindole histochemical reaction.
    King MP; Angelakos ET
    Acta Histochem; 1973; 45(1):61-70. PubMed ID: 4197866
    [No Abstract]   [Full Text] [Related]  

  • 16. Staining of different endocrine cells with hydrochloric acid-toluidine blue in Epon embedded rat tissue.
    Pabst MA
    Stain Technol; 1985 Mar; 60(2):93-8. PubMed ID: 2580373
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Pancreatic polypeptide - a postulated new hormone: identification of its cellular storage site by light and electron microscopic immunocytochemistry.
    Larsson LI; Sundler F; Håkanson R
    Diabetologia; 1976 Jul; 12(3):211-26. PubMed ID: 782992
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [Neuro-intestinal peptides and peptide-producing cells--immunohistocytochemistry of catecholamines and opioid peptides in the hamster adrenal medulla].
    Kobayashi S; Uchida T
    Nihon Heikatsukin Gakkai Zasshi; 1984 Oct; 20(5):393-9. PubMed ID: 6398380
    [No Abstract]   [Full Text] [Related]  

  • 19. Random coil conformation of polypeptide hormone precursor protein in endocrine cells.
    Pearse AG
    Nature; 1969 Mar; 221(5187):1210-1. PubMed ID: 4304395
    [No Abstract]   [Full Text] [Related]  

  • 20. Immunological characterization of chromogranins A and B and secretogranin II in the bovine pancreatic islet.
    Yoshie S; Hagn C; Ehrhart M; Fischer-Colbrie R; Grube D; Winkler H; Gratzl M
    Histochemistry; 1987; 87(2):99-106. PubMed ID: 3305433
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.