These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

133 related articles for article (PubMed ID: 411558)

  • 1. Isometric tension and instantaneous stiffness in amphibian skeletal muscle exposed to solutions of increased tonicity.
    Bressler BH
    Can J Physiol Pharmacol; 1977 Oct; 55(5):1208-10. PubMed ID: 411558
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Isometric contractile properties and instantaneous stiffness of amphibian skeletal muscle in the temperature range from 0 to 20 degrees C.
    Bressler BH
    Can J Physiol Pharmacol; 1981 Jun; 59(6):548-54. PubMed ID: 6794890
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Tension and instantaneous stiffness of single muscle fibers immersed in Ringer solution of decreased tonicity.
    Bressler BH; Matsuba K
    Biophys J; 1991 May; 59(5):1002-6. PubMed ID: 1868151
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Changes in force and stiffness during stretch of skeletal muscle fibers, effects of hypertonicity.
    Månsson A
    Biophys J; 1989 Aug; 56(2):429-33. PubMed ID: 2789080
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The effects of tonicity on tension and stiffness of tetanized skeletal muscle fibres of the frog.
    Månsson A
    Acta Physiol Scand; 1989 Jun; 136(2):205-16. PubMed ID: 2789465
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The effect of hypertonicity on force generation in tetanized single fibres from frog skeletal muscle.
    Piazzesi G; Linari M; Lombardi V
    J Physiol; 1994 May; 476(3):531-46. PubMed ID: 8057258
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Hypertonicity and force development in frog skeletal muscle fibres.
    Vaughan PC; Bressler BH; Dusik LA; Trotter MJ
    Can J Physiol Pharmacol; 1983 Aug; 61(8):847-56. PubMed ID: 6605184
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Tension in isolated frog muscle fibers induced by hypertonic solutions.
    Lännergren J; Noth J
    J Gen Physiol; 1973 Feb; 61(2):158-75. PubMed ID: 4540058
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Some effects of hypertonic solutions on contraction and excitation-contraction coupling in frog skeletal muscles.
    Gordon AM; Godt RE
    J Gen Physiol; 1970 Feb; 55(2):254-75. PubMed ID: 5415044
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The compliance of contracting skeletal muscle.
    Bressler BH; Clinch NF
    J Physiol; 1974 Mar; 237(3):477-93. PubMed ID: 4207658
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Tension responses to sudden length change in stimulated frog muscle fibres near slack length.
    Ford LE; Huxley AF; Simmons RM
    J Physiol; 1977 Jul; 269(2):441-515. PubMed ID: 302333
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Tonicity effects on intact single muscle fibers: relation between force and cell volume.
    Gulati J; Babu A
    Science; 1982 Feb; 215(4536):1109-12. PubMed ID: 6977845
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The comparative effects of (Ca2+) and (Mg2+) on on tension generation in the fibers of skinned frog skeletal muscle and mechanically disrupted rat ventricular cardiac muscle.
    Glenn W; Kerrick L; Donaldson SK
    Pflugers Arch; 1975 Jul; 358(3):195-201. PubMed ID: 1081680
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The force-velocity relationship in vertebrate muscle fibres at varied tonicity of the extracellular medium.
    Edman KA; Hwang JC
    J Physiol; 1977 Jul; 269(2):255-72. PubMed ID: 302331
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effect of hypertonic solutions and "glycerol treatment" on calcium and magnesium movements of frog skeletal muscle.
    Bianchi CP; Bolton TC
    J Pharmacol Exp Ther; 1974 Mar; 188(3):536-52. PubMed ID: 4544587
    [No Abstract]   [Full Text] [Related]  

  • 16. Characterization of cross-bridge elasticity and kinetics of cross-bridge cycling during force development in single smooth muscle cells.
    Warshaw DM; Rees DD; Fay FS
    J Gen Physiol; 1988 Jun; 91(6):761-79. PubMed ID: 3047311
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The relation between stiffness and filament overlap in stimulated frog muscle fibres.
    Ford LE; Huxley AF; Simmons RM
    J Physiol; 1981 Feb; 311():219-49. PubMed ID: 6973625
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Force-velocity relation and stiffness in frog single muscle fibres during the rise of tension in an isometric tetanus.
    Lorenzini CA; Colomo F; Lombardi V
    Adv Exp Med Biol; 1984; 170():757-64. PubMed ID: 6611041
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Time course and magnitude of effects of changes in tonicity on acetylcholine release at frog neuromuscular junction.
    Kita H; van der Kloot W
    J Neurophysiol; 1977 Mar; 40(2):212-24. PubMed ID: 300428
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The effect of bathing solution tonicity on resting tension in frog muscle fibers.
    Lännergren J; Noth J
    J Gen Physiol; 1973 Dec; 62(6):737-55. PubMed ID: 4548715
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.