These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
7. An improved simple tungsten microelectrode. Vidyasagar TR; Perry GW Brain Res Bull; 1979; 4(2):285-6. PubMed ID: 466514 [TBL] [Abstract][Full Text] [Related]
8. [Improved tungsten microelectrodes for recording activity of cells of subcortical structures in chronic experiments]. Mikhaĭlov AV; Dekhkanbaev SM; Fesik GA Zh Vyssh Nerv Deiat Im I P Pavlova; 1982; 32(4):776-9. PubMed ID: 7136285 [No Abstract] [Full Text] [Related]
9. Thin-film epidural microelectrode arrays for somatosensory and motor cortex mapping in rat. Hosp JA; Molina-Luna K; Hertler B; Atiemo CO; Stett A; Luft AR J Neurosci Methods; 2008 Jul; 172(2):255-62. PubMed ID: 18582949 [TBL] [Abstract][Full Text] [Related]
10. Another tungsten microelectrode. Levick WR Med Biol Eng; 1972 Jul; 10(4):510-5. PubMed ID: 4627562 [No Abstract] [Full Text] [Related]
11. [Method of obtaining metal microelectrodes with high ohm conductivity and low capacitative conductivity]. Lenzi P; Franzini C Boll Soc Ital Biol Sper; 1975 Apr; 51(7):409-12. PubMed ID: 1212325 [No Abstract] [Full Text] [Related]
12. [Use of a multipolar standard terminal and device for implanting deep carbon electrodes for EEG recordings in chronic experiments on animals]. Shustov VN; Makashev AM Fiziol Zh SSSR Im I M Sechenova; 1970 Sep; 56(9):1301-3. PubMed ID: 5501689 [No Abstract] [Full Text] [Related]
13. A rapid method for production of sharp tips on preinsulated microwires. Kaltenbach JA; Gerstein GL J Neurosci Methods; 1986 Jun; 16(4):283-8. PubMed ID: 3736117 [TBL] [Abstract][Full Text] [Related]
14. Description of a special electrode for one channel recording from the scalp and the neck of early successive evoked sub-cortical and cortical somato-sensory potentials. Liberson WT Electromyogr Clin Neurophysiol; 1981; 21(2-3):331-8. PubMed ID: 7262012 [No Abstract] [Full Text] [Related]
15. A compact micro-electrode assembly for recording from the freely-moving rat. Winson J Electroencephalogr Clin Neurophysiol; 1973 Aug; 35(2):215-7. PubMed ID: 4124617 [No Abstract] [Full Text] [Related]
16. [Dependence of cortical neuronal reactions on the intensity of direct stimulation of the cortex]. Gvozdikova ZM; Shuranova ZhP Fiziol Zh SSSR Im I M Sechenova; 1973 Nov; 59(11):1663-70. PubMed ID: 4791904 [No Abstract] [Full Text] [Related]
17. In-vivo implant mechanics of flexible, silicon-based ACREO microelectrode arrays in rat cerebral cortex. Jensen W; Yoshida K; Hofmann UG IEEE Trans Biomed Eng; 2006 May; 53(5):934-40. PubMed ID: 16686416 [TBL] [Abstract][Full Text] [Related]
18. Improved methods for construction of carbon fibre electrodes for extracellular spike recording. Millar J; Pelling CW J Neurosci Methods; 2001 Sep; 110(1-2):1-8. PubMed ID: 11564518 [TBL] [Abstract][Full Text] [Related]
19. A microdrive for use with glass or metal microelectrodes in recording from freely-moving rats. Deadwyler SA; Biela J; Rose G; West M; Lynch G Electroencephalogr Clin Neurophysiol; 1979 Dec; 47(6):752-4. PubMed ID: 91506 [TBL] [Abstract][Full Text] [Related]
20. [Device for pharmacologic and electrophysiologic studies of subcortical brain structures in chronic experiments in animals]. Shuvaev VT; Iakimovskiĭ AF Zh Vyssh Nerv Deiat Im I P Pavlova; 1981; 31(5):1093-6. PubMed ID: 7314908 [No Abstract] [Full Text] [Related] [Next] [New Search]