These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

140 related articles for article (PubMed ID: 4116306)

  • 1. Meiotic association of X and Y mouse chromosomes as revealed by acridine orange fluorescence after DNA denaturation and differential renaturation.
    Stockert JC
    Exp Cell Res; 1972 Sep; 74(1):279-80. PubMed ID: 4116306
    [No Abstract]   [Full Text] [Related]  

  • 2. Acridine-orange differential fluorescence of fast- and slow-reassociating chromosomal DNA after in situ DNA denaturation and reassociation.
    Stockert JC; Lisanti JA
    Chromosoma; 1972; 37(2):117-30. PubMed ID: 4114487
    [No Abstract]   [Full Text] [Related]  

  • 3. Acridine orange binding to chromatin of individual cells and nuclei under different staining conditions. Thermadenaturation of Chromatin.
    Liedeman R; Bolund L
    Exp Cell Res; 1976 Aug; 101(1):175-83. PubMed ID: 60247
    [No Abstract]   [Full Text] [Related]  

  • 4. Further fluorospectrophotometric studies on the binding of acridine orange with DNA. Effects of thermal denaturation of DNA and additions of spermine, kanamycin, dihydrostreptomycin, methylene blue and chlorpromazine.
    Yamabe S
    Arch Biochem Biophys; 1973 Jan; 154(1):19-27. PubMed ID: 4120343
    [No Abstract]   [Full Text] [Related]  

  • 5. In situ localization and characterization of different classes of chromosomal DNA: acridine orange and quinacrine mustard fluorescence.
    de la Chapelle A; Schröder J; Selander RK
    Chromosoma; 1973; 40(4):347-60. PubMed ID: 4120884
    [No Abstract]   [Full Text] [Related]  

  • 6. [Correlation between DNA melting temperature and the temperature variation of nuclear luminescence spectrum in plant cells supravitally stained with acridine orange].
    Ezerzha AA; Kulikov BN; Ovchinnikova MI; Mochalkin AI
    Tsitologiia; 1971 Aug; 13(8):1009-13. PubMed ID: 4107346
    [No Abstract]   [Full Text] [Related]  

  • 7. The nature of strong binding between acridine orange and deoxyribonucleic acid as revealed by equilibrium dialysis and thermal renaturation.
    Ichimura S; Zama M; Fujita H; Ito T
    Biochim Biophys Acta; 1969 Sep; 190(1):116-25. PubMed ID: 5387782
    [No Abstract]   [Full Text] [Related]  

  • 8. Microfluorimetric study of thermal denaturation of the nuclear DNP-complex of lymphocytes stained with acridine orange.
    Zlobina GP
    Bull Exp Biol Med; 1974 Aug; 77(2):131-3. PubMed ID: 4140001
    [No Abstract]   [Full Text] [Related]  

  • 9. Thermal denaturation of DNA in situ as studied by acridine orange staining and automated cytofluorometry.
    Darzynkiewicz Z; Traganos F; Sharpless T; Melamed MR
    Exp Cell Res; 1975 Feb; 90(2):411-28. PubMed ID: 46199
    [No Abstract]   [Full Text] [Related]  

  • 10. Denaturation, renaturation, and loss of DNA during in situ hybridization procedures.
    Raap AK; Marijnen JG; Vrolijk J; van der Ploeg M
    Cytometry; 1986 May; 7(3):235-42. PubMed ID: 3709305
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Microfluorometric comparisons of heat-induced nuclear acridine orange metachromasia between normal cells and neoplastic cells from primary tumors of diverse origin.
    Alvarez MR
    Cancer Res; 1975 Jan; 35(1):93-8. PubMed ID: 45893
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [Morphologic aspects of human spermatozoa after fluorescent staining with acridine orange].
    Floris F; Lecca U
    Minerva Ginecol; 1970 Apr; 22(8):456-7. PubMed ID: 4098840
    [No Abstract]   [Full Text] [Related]  

  • 13. The use of new staining techniques for human chromosome identification.
    Pearson P
    J Med Genet; 1972 Sep; 9(3):264-75. PubMed ID: 4116768
    [No Abstract]   [Full Text] [Related]  

  • 14. Quantitative determination of single-stranded sections in DNA using the fluorescent probe acridine orange.
    Ichimura S; Zama M; Fujita H
    Biochim Biophys Acta; 1971 Jul; 240(4):485-95. PubMed ID: 4941738
    [No Abstract]   [Full Text] [Related]  

  • 15. Differential fluorescence in metaphase chromosomes stained by acridine orange.
    Stockert JC; Lisanti JA
    Stain Technol; 1972 Mar; 47(2):103-4. PubMed ID: 4113101
    [No Abstract]   [Full Text] [Related]  

  • 16. [New methods of identifying chromosomes].
    Poroshenko GG; Gor'kova SN
    Tsitol Genet; 1975; 9(6):555-60. PubMed ID: 56795
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Differential rates of DNA denaturation and renaturation in situ in relation to the C-banding of Allium cepa chromosomes.
    Gendel S; Fosket DE
    Cytobios; 1978; 21(82):91-101. PubMed ID: 751782
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Methyl green staining and highly repetitive DNA in polytene chromosomes.
    Díaz M
    Chromosoma; 1972; 37(2):131-8. PubMed ID: 4114488
    [No Abstract]   [Full Text] [Related]  

  • 19. Acridine orange as a supravital fluorochrome indicating varying degrees of chromatin condensation.
    Cowden RR; Curtis SK
    Histochemistry; 1974; 40(4):305-10. PubMed ID: 4139149
    [No Abstract]   [Full Text] [Related]  

  • 20. The mechanism of C- and G-banding of chromosomes.
    Comings DE; Avelino E; Okada TA; Wyandt HE
    Exp Cell Res; 1973 Mar; 77(1):469-83. PubMed ID: 4120442
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 7.