These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

141 related articles for article (PubMed ID: 4117693)

  • 1. [Karyotype and heterochromatin pattern in the Romanian hamster (Mesocricetus newtoni)].
    Voiculescu I; Vogel W; Wolf U
    Chromosoma; 1972; 39(2):215-24. PubMed ID: 4117693
    [No Abstract]   [Full Text] [Related]  

  • 2. Chromosomal interrelationship of hamster species of the genus Mesocricetus.
    Popescu NC; DePaolo JA
    Cytogenet Cell Genet; 1980; 28(1-2):10-23. PubMed ID: 7449429
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The sex chromosomes of the Chinese hamster: constitutive heterochromatin deficient in repetitive DNA sequences.
    Arrighi FE; Hsu TC; Pathak S; Sawada H
    Cytogenet Cell Genet; 1974; 13(3):268-74. PubMed ID: 4135468
    [No Abstract]   [Full Text] [Related]  

  • 4. Fluorescence banding pattern of the chromosomes of Microtus agrestis with a benzimidazol derivative.
    Seth PK; Pera F; Hilwig I; Gropp A
    Humangenetik; 1973 Jul; 19(2):129-34. PubMed ID: 4126706
    [No Abstract]   [Full Text] [Related]  

  • 5. Karyotype analysis utilizing differentially stained constitutive heterochromatin of human and murine chromosomes.
    Chen TR; Ruddle FH
    Chromosoma; 1971; 34(1):51-72. PubMed ID: 4105527
    [No Abstract]   [Full Text] [Related]  

  • 6. The chromosomes of CHO, an aneuploid Chinese hamster cell line: G-band, C-band, and autoradiographic analyses.
    Deaven LL; Petersen DF
    Chromosoma; 1973; 41(2):129-44. PubMed ID: 4120885
    [No Abstract]   [Full Text] [Related]  

  • 7. The fluorescent karyotype of the tachnid fly Voria ruralis FallĂ©n (Diptera).
    Wake CT; Ward OG
    Experientia; 1975 Mar; 31(3):291-4. PubMed ID: 46829
    [No Abstract]   [Full Text] [Related]  

  • 8. The relationship between patterns of DNA replication and of quinacrine fluorescence in the human chromosome complement.
    Ganner E; Evans HJ
    Chromosoma; 1971; 35(3):326-41. PubMed ID: 4109087
    [No Abstract]   [Full Text] [Related]  

  • 9. Studies on sex chromosomes of four hamster species: Cricetus cricetus, Cricetulus griseus, Mesocricetus auratus, and Phodopus sungorus.
    Vistorin G; Gamperl R; Rosenkranz W
    Cytogenet Cell Genet; 1977; 18(1):24-32. PubMed ID: 67011
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Karyotype of the chimpanzee, Pan troglodytes, based on measurements and banding pattern: comparison to the human karyotype.
    Warburton D; Firschein IL; Miller DA; Warburton FE
    Cytogenet Cell Genet; 1973; 12(6):453-61. PubMed ID: 4134388
    [No Abstract]   [Full Text] [Related]  

  • 11. Differential Giemsa staining of heterochromatic B-chromosomes in Myrmeleotettix maculatus (Thumb.) (Orthoptera: Acrididae).
    Gallagher A; Hewitt G; Gibson I
    Chromosoma; 1973; 40(2):167-72. PubMed ID: 4118110
    [No Abstract]   [Full Text] [Related]  

  • 12. Relationship of centromeric heterochromatin to fluorescent banding patterns of metaphase chromosomes in the mouse.
    Rowley JD; Bodmer WF
    Nature; 1971 Jun; 231(5304):503-6. PubMed ID: 4103792
    [No Abstract]   [Full Text] [Related]  

  • 13. [Dependence of heterochromatin differential staining on the time of its reduplication and the degree of condensation].
    Tupitsyna LP; Zakharov AF; Tsvetkova TG
    Tsitologiia; 1975 Mar; 17(3):261-5. PubMed ID: 49115
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Quinacrine fluorescence of Mus cervicolor chromosomes. Bright centrometric heterochromatin.
    Dev VG; Miller DA; Miller OJ; Marshall JT; Hsu TC
    Exp Cell Res; 1973 Jun; 79(2):475-9. PubMed ID: 4131369
    [No Abstract]   [Full Text] [Related]  

  • 15. On the Y fluorescence in human male fibroblasts.
    Cramer H; Hansen S
    Humangenetik; 1972; 17(1):23-8. PubMed ID: 4119155
    [No Abstract]   [Full Text] [Related]  

  • 16. Application of an established diploid Microtus agrestis cell line as a model for the understanding of mammalian heterochromatin.
    De la Maza LM; Yunis JJ
    Exp Cell Res; 1974 Mar; 84(1):175-82. PubMed ID: 4131765
    [No Abstract]   [Full Text] [Related]  

  • 17. Proposed banding nomenclature for the Chinese hamster chromosomes (Cricetulus grises).
    Hamerton JL
    Birth Defects Orig Artic Ser; 1976; 12(7):83-91. PubMed ID: 1024658
    [No Abstract]   [Full Text] [Related]  

  • 18. Mechanisms of chromosome banding. III. Similarity between G-bands of mitotic chromosomes and chromomeres of meiotic chromosomes.
    Okada TA; Comings DE
    Chromosoma; 1974; 48(1):65-71. PubMed ID: 4141957
    [No Abstract]   [Full Text] [Related]  

  • 19. Distribution of constitutive heterochromatin in HeLa and HEp-2 cell lines.
    Sinha AK; Pathak S
    Humangenetik; 1973 Mar; 18(1):47-54. PubMed ID: 4124494
    [No Abstract]   [Full Text] [Related]  

  • 20. Heterochromatin heterogeneity in Chinese hamster sex bivalents.
    Murer-Orlando M; Richer CL
    Cytogenet Cell Genet; 1983; 35(3):195-9. PubMed ID: 6861524
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.