These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

446 related articles for article (PubMed ID: 412047)

  • 21. Fast neutron therapy beam produced by 26 MeV protons on beryllium.
    Goodhead DT; Berry RJ; Bance DA; Gray P
    Phys Med Biol; 1978 Jan; 23(1):144-8. PubMed ID: 416445
    [No Abstract]   [Full Text] [Related]  

  • 22. Physical characteristics of a clinical d(48.5)+Be neutron therapy beam produced by a superconducting cyclotron.
    Maughan RL; Yudelev M
    Med Phys; 1995 Sep; 22(9):1459-65. PubMed ID: 8531873
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Improvement of a p(65)+Be neutron beam for therapy at Cyclone, Louvain-la-Neuve.
    Vynckier S; Pihet P; Flémal JM; Meulders JP; Wambersie A
    Phys Med Biol; 1983 Jun; 28(6):685-91. PubMed ID: 6410421
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Dosimetric properties of neutron beams from the D--D reaction in the energy range from 6.8 to 11.1 MeV.
    Waterman FM; Kuchnir FT; Skaggs LS; Hendry GO; Tom JL
    Phys Med Biol; 1978 May; 23(3):397-404. PubMed ID: 674357
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Study of boron neutron capture therapy used neutron source with protons bombarding a thick 9Be target.
    Yue G; Chen J; Song R
    Med Phys; 1997 Jun; 24(6):851-5. PubMed ID: 9198018
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Neutron beams from protons on beryllium.
    Bewley DK; Meulders JP; Octave-Prignot M; Page BC
    Phys Med Biol; 1980 Sep; 25(5):887-92. PubMed ID: 6256782
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Design of flattening filters for the fast-neutron beam at TAMVEC by use of decrement lines.
    Otte VA; Smathers JB; Wright RE
    Med Phys; 1976; 3(4):250-2. PubMed ID: 822271
    [TBL] [Abstract][Full Text] [Related]  

  • 28. TPD-based evaluation of near threshold mono-energetic proton energies for the (7)Li(p,n)(7)Be production of neutrons for BNCT.
    Bengua G; Kobayashi T; Tanaka K; Nakagawa Y; Unesaki H
    Phys Med Biol; 2006 Aug; 51(16):4095-109. PubMed ID: 16885627
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Microdosimetry of an accelerator based thermal neutron field for Boron Neutron Capture Therapy.
    Selva A; Bellan L; Bianchi A; Giustiniani G; Colautti P; Fagotti E; Pisent A; Conte V
    Appl Radiat Isot; 2022 Apr; 182():110144. PubMed ID: 35168037
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Measurements of neutron energy spectra from 7Li(p,n)7Be reaction with Bonner sphere spectrometer, Nested Neutron Spectrometer and ROSPEC.
    Atanackovic J; Matysiak W; Witharana S; Dubeau J; Waker AJ
    Radiat Prot Dosimetry; 2014 Oct; 161(1-4):221-4. PubMed ID: 24298169
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Measurement of neutron spectra generated from bombardment of 4 to 24 MeV protons on a thick ⁹Be target and estimation of neutron yields.
    Paul S; Sahoo GS; Tripathy SP; Sharma SC; Ramjilal ; Ninawe NG; Sunil C; Gupta AK; Bandyopadhyay T
    Rev Sci Instrum; 2014 Jun; 85(6):063501. PubMed ID: 24985813
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Thick beryllium target as an epithermal neutron source for neutron capture therapy.
    Wang CK; Moore BR
    Med Phys; 1994 Oct; 21(10):1633-8. PubMed ID: 7869996
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Secondary photon fields produced in accelerator-based sources for neutron generation.
    Agosteo S; Cesana A; Garlati L; Pola A; Terrani M
    Radiat Prot Dosimetry; 2005; 115(1-4):363-8. PubMed ID: 16381747
    [TBL] [Abstract][Full Text] [Related]  

  • 34. [Principle of neutron teletherapy with the Soviet U-120 cyclotron].
    Letov VN; Bel'skiĭ EM; Ievlev SM; Komov AI; Protasevich ET
    Med Radiol (Mosk); 1987 Jun; 32(6):27-33. PubMed ID: 3110536
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Modification of the 50% maximum dose depth for 41-MeV (p+,Be) neutrons by use of filtration and/or transmission targets.
    Smathers JB; Graves RG; Earls L; Otte VA; Almond PR
    Med Phys; 1982; 9(6):856-9. PubMed ID: 6298587
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Neutron field produced by 25 MeV deuteron on thick beryllium for radiobiological study; energy spectrum.
    Takada M; Mihara E; Sasaki M; Nakamura T; Honma T; Kono K; Fujitaka K
    Radiat Prot Dosimetry; 2004; 110(1-4):601-6. PubMed ID: 15353715
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Direction distribution of ambient neutron dose equivalent from 20 MeV protons incident on thick Be and Cu targets.
    Sunil C; Shanbhag AA; Nandy M; Maiti M; Bandyopadhyay T; Sarkar PK
    Radiat Prot Dosimetry; 2009 Sep; 136(2):67-73. PubMed ID: 19700498
    [TBL] [Abstract][Full Text] [Related]  

  • 38. A new fast-neutron source for radiobiological research.
    Wolber G; Hoever KH; Krauss O; Maier-Borst W
    Phys Med Biol; 1997 Apr; 42(4):725-33. PubMed ID: 9127448
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Dosimetric properties of neutron beams produced by 16-60 MeV deuterons on beryllium.
    Almond PR; Smathers JB; Oliver GD; Hranitzky EB; Routt K
    Radiat Res; 1973 Apr; 54(1):24-34. PubMed ID: 4699794
    [No Abstract]   [Full Text] [Related]  

  • 40. Microdosimetric investigations on collimated fast neutron beams for radiation therapy: II. The problem of radiation quality and RBE.
    Booz J; Fidorra J
    Phys Med Biol; 1981 Jan; 26(1):43-56. PubMed ID: 6264510
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 23.