These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

130 related articles for article (PubMed ID: 41223)

  • 1. Stability of the unique anticodon loop conformation of E.coli tRNAfMet.
    Wrede P; Rich A
    Nucleic Acids Res; 1979 Nov; 7(6):1457-67. PubMed ID: 41223
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Initiator tRNAs have a unique anticodon loop conformation.
    Wrede P; Woo NH; Rich A
    Proc Natl Acad Sci U S A; 1979 Jul; 76(7):3289-93. PubMed ID: 386336
    [TBL] [Abstract][Full Text] [Related]  

  • 3. [Conformational transitions in tRNA fMet from E. coli induced by monovalent and divalent ions].
    Surovaia AN; Borisova OF
    Mol Biol (Mosk); 1976; 10(6):1403-12. PubMed ID: 802788
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Study of the interaction of Escherichia coli methionyl-tRNA synthetase with tRNAfMet using chemical and enzymatic probes.
    Pelka H; Schulman LH
    Biochemistry; 1986 Jul; 25(15):4450-6. PubMed ID: 3092857
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Escherichia coli formylmethionine tRNA: mutations in GGGCCC sequence conserved in anticodon stem of initiator tRNAs affect initiation of protein synthesis and conformation of anticodon loop.
    Seong BL; RajBhandary UL
    Proc Natl Acad Sci U S A; 1987 Jan; 84(2):334-8. PubMed ID: 3540960
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Location of accessible bases in Escherichia coli formylmethionine transfer RNA as determined by chemical modification.
    Schulman LH; Pelka H
    Biochemistry; 1976 Dec; 15(26):5769-75. PubMed ID: 827308
    [TBL] [Abstract][Full Text] [Related]  

  • 7. 19F nuclear magnetic resonance as a probe of anticodon structure in 5-fluorouracil-substituted Escherichia coli transfer RNA.
    Gollnick P; Hardin CC; Horowitz J
    J Mol Biol; 1987 Oct; 197(3):571-84. PubMed ID: 2450205
    [TBL] [Abstract][Full Text] [Related]  

  • 8. High-resolution phosphorus nuclear magnetic resonance spectroscopy of transfer ribonucleic acids: multiple conformations in the anticodon loop.
    Gorenstein DG; Goldfield EM
    Biochemistry; 1982 Nov; 21(23):5839-49. PubMed ID: 6185140
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Anticodon loop size and sequence requirements for recognition of formylmethionine tRNA by methionyl-tRNA synthetase.
    Schulman LH; Pelka H
    Proc Natl Acad Sci U S A; 1983 Nov; 80(22):6755-9. PubMed ID: 6359155
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Recognition of tRNAs by aminoacyl-tRNA synthetases: Escherichia coli tRNAMet and E. coli methionyl-tRNA synthetase.
    Schulman LH; Pelka H
    Fed Proc; 1984 Dec; 43(15):2977-80. PubMed ID: 6389181
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Base substitutions in the wobble position of the anticodon inhibit aminoacylation of E. coli tRNAfMet by E. coli Met-tRNA synthetase.
    Schulman LH; Pelka H; Susani M
    Nucleic Acids Res; 1983 Mar; 11(5):1439-55. PubMed ID: 6338482
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Anticodon conformation and accessibility in wild-type and suppressor tryptophan tRNA from E. coli.
    Buckingham RH
    Nucleic Acids Res; 1976 Apr; 3(4):965-75. PubMed ID: 775447
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Role of divalent ions in folding of tRNA.
    Leroy JL; Guéron M; Thomas G; Favre A
    Eur J Biochem; 1977 Apr; 74(3):567-74. PubMed ID: 192553
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Structural analysis of spermine and magnesium ion binding to yeast phenylalanine transfer RNA.
    Quigley GJ; Teeter MM; Rich A
    Proc Natl Acad Sci U S A; 1978 Jan; 75(1):64-8. PubMed ID: 343112
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Conformation of Escherichia coli glutamic acid tRNA II as studied by hydrogen-tritium exchange catalyzed by cysteine methyl ester.
    Eur J Biochem; 1976 Apr; 64(1):27-34. PubMed ID: 6269
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Yeast mitochondrial methionine initiator tRNA: characterization and nucleotide sequence.
    Canaday J; Dirheimer G; Martin RP
    Nucleic Acids Res; 1980 Apr; 8(7):1445-57. PubMed ID: 6448989
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Role of the three consecutive G:C base pairs conserved in the anticodon stem of initiator tRNAs in initiation of protein synthesis in Escherichia coli.
    Mandal N; Mangroo D; Dalluge JJ; McCloskey JA; Rajbhandary UL
    RNA; 1996 May; 2(5):473-82. PubMed ID: 8665414
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Involvement of the size and sequence of the anticodon loop in tRNA recognition by mammalian and E. coli methionyl-tRNA synthetases.
    Meinnel T; Mechulam Y; Fayat G; Blanquet S
    Nucleic Acids Res; 1992 Sep; 20(18):4741-6. PubMed ID: 1408786
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Structural effects of hypermodified nucleosides in the Escherichia coli and human tRNALys anticodon loop: the effect of nucleosides s2U, mcm5U, mcm5s2U, mnm5s2U, t6A, and ms2t6A.
    Durant PC; Bajji AC; Sundaram M; Kumar RK; Davis DR
    Biochemistry; 2005 Jun; 44(22):8078-89. PubMed ID: 15924427
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Analysis of modification-dependent structural alterations in the anticodon loop of Escherichia coli tRNAArg and their effects on the translation of MS2 RNA.
    Baumann U; Fischer W; Sprinzl M
    Eur J Biochem; 1985 Nov; 152(3):645-9. PubMed ID: 2996897
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.