These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

125 related articles for article (PubMed ID: 4123724)

  • 1. Peptidyl-transferase activity of Escherichia coli ribosomes digested by ribonuclease T 1 .
    Cerná J; Rychlík I; Jonák J
    Eur J Biochem; 1973 May; 34(3):551-6. PubMed ID: 4123724
    [No Abstract]   [Full Text] [Related]  

  • 2. Mitochondrial antibiotic resistance in yeast: ribosomal mutants resistant to chloramphenicol, erythromycin and spiramycin.
    Grivell LA; Netter P; Borst P; Slonimski PP
    Biochim Biophys Acta; 1973 Jun; 312(2):358-67. PubMed ID: 4579232
    [No Abstract]   [Full Text] [Related]  

  • 3. Enhancement of peptidyl transferase activity by antibiotics acting on the 50 S ribosomal subunit.
    Miskin R; Zamir A
    J Mol Biol; 1974 Jul; 87(1):121-34. PubMed ID: 4610151
    [No Abstract]   [Full Text] [Related]  

  • 4. Properties of ribosomes from Streptomyces erythreus and Streptomyces griseus.
    Teraoka H; Tanaka K
    J Bacteriol; 1974 Oct; 120(1):316-21. PubMed ID: 4138441
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The effect of antibiotics on the substrate binding to the acceptor and donor site of ribosomal peptidyltransferase of an erythromycin-resistant mutant of Escherichia coli.
    Cerná J; Rychlík I
    Biochim Biophys Acta; 1972 Dec; 287(2):292-300. PubMed ID: 4609472
    [No Abstract]   [Full Text] [Related]  

  • 6. Substrate- and antibiotic-binding sites at the peptidyl-transferase centre of Escherichia coli ribosomes. Studies on the chloramphenicol. lincomycin and erythromycin sites.
    Fernandez-Munoz R; Monro RE; Torres-Pinedo R; Vazquez D
    Eur J Biochem; 1971 Nov; 23(1):185-93. PubMed ID: 4942548
    [No Abstract]   [Full Text] [Related]  

  • 7. Alteration of 23 S ribosomal RNA and erythromycin-induced resistance to lincomycin and spiramycin in Staphylococcus aureus.
    Lai CJ; Weisblum B; Fahnestock SR; Nomura M
    J Mol Biol; 1973 Feb; 74(1):67-72. PubMed ID: 4731016
    [No Abstract]   [Full Text] [Related]  

  • 8. Hygromycin A, a novel inhibitor of ribosomal peptidyltransferase.
    Guerrero MD; Modolell J
    Eur J Biochem; 1980 Jun; 107(2):409-14. PubMed ID: 6156832
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The mode of action of griseoviridin at the ribosome level.
    Barbacid M; Contreras A; Vazquez D
    Biochim Biophys Acta; 1975 Jul; 395(3):347-54. PubMed ID: 1096949
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Antibiotic action in protein synthesis.
    Vazquez D
    Basic Life Sci; 1973; 1():339-59. PubMed ID: 4359218
    [No Abstract]   [Full Text] [Related]  

  • 11. Cross resistance of Escherichia coli B. ribosomes to inhibition of the puromycin reaction by erythromycin, spiramycin and chloramphenicol.
    Rychlík I; Cerná J
    Hoppe Seylers Z Physiol Chem; 1968 Aug; 349(8):958-9. PubMed ID: 4878426
    [No Abstract]   [Full Text] [Related]  

  • 12. Effects of macrolide antibiotics on the ribosomal peptidyl transferase in cell-free systems derived from Escherichia coli B and erythromycin-resistant muytant of Escherichia coli B.
    Cerná J; Jonák J; Rychlík I
    Biochim Biophys Acta; 1971 Jun; 240(1):109-21. PubMed ID: 4940152
    [No Abstract]   [Full Text] [Related]  

  • 13. Interaction of the antibiotics clindamycin and lincomycin with Escherichia coli 23S ribosomal RNA.
    Douthwaite S
    Nucleic Acids Res; 1992 Sep; 20(18):4717-20. PubMed ID: 1383931
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Inhibition of the ribosomal peptidyl transferase reaction by the mycarose moiety of the antibiotics carbomycin, spiramycin and tylosin.
    Poulsen SM; Kofoed C; Vester B
    J Mol Biol; 2000 Dec; 304(3):471-81. PubMed ID: 11090288
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The effect of ribosomal peptidyl-transferase inhibitors is antagonized by elongation factor G with GTP.
    Spirin AS; Asatryan LS
    FEBS Lett; 1976 Nov; 70(1):101-4. PubMed ID: 791676
    [No Abstract]   [Full Text] [Related]  

  • 16. Synthesis of thioamide bond catalyzed by E. coli ribosomes.
    Victorova LS; Kotusov VV; Azhaev AV; Krayevsky AA; Kukhanova MK; Gottikh BP
    FEBS Lett; 1976 Oct; 68(2):215-8. PubMed ID: 789114
    [No Abstract]   [Full Text] [Related]  

  • 17. A photo-induced reaction of chloramphenicol with E. coli ribosomes: covalent binding of the antibiotic and inactivation of peptidyl transferase.
    Sonenberg N; Zamir A; Wilchek M
    Biochem Biophys Res Commun; 1974 Jul; 59(2):693-6. PubMed ID: 4604026
    [No Abstract]   [Full Text] [Related]  

  • 18. Binding to ribosomes and mode of action of chloramphenicol analogues.
    Contreras A; Barbacid M; Vazquez D
    Biochim Biophys Acta; 1974 May; 349(3):376-88. PubMed ID: 4601418
    [No Abstract]   [Full Text] [Related]  

  • 19. Inhibitors of protein synthesis at the ribosome level. Studies on their site of action.
    Vazquez D
    Life Sci; 1967 Feb; 6(4):381-6. PubMed ID: 5340250
    [No Abstract]   [Full Text] [Related]  

  • 20. The involvement of protein L16 on ribosomal peptidyl transferase activity.
    Bernabeu C; Vázquez D; Ballesta JP
    Eur J Biochem; 1977 Oct; 79(2):469-72. PubMed ID: 336360
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.