BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

214 related articles for article (PubMed ID: 4123797)

  • 1. Axonal transport of catecholamine synthesizing and metabolizing enzymes.
    Wooten GF; Coyle JT
    J Neurochem; 1973 May; 20(5):1361-71. PubMed ID: 4123797
    [No Abstract]   [Full Text] [Related]  

  • 2. Relationship between the rate of axoplasmic transport and subcellular distribution of enzymes involved in the synthesis of norepinephrine.
    Oesch F; Otten U; Thoenen H
    J Neurochem; 1973 Jun; 20(6):1691-706. PubMed ID: 4124177
    [No Abstract]   [Full Text] [Related]  

  • 3. Effects of colchicine and vinblastine on axonal transport and transmitter release in sympathetic nerves.
    Wooten GF; Kopin IJ; Axelrod J
    Ann N Y Acad Sci; 1975 Jun; 253():528-34. PubMed ID: 50036
    [No Abstract]   [Full Text] [Related]  

  • 4. Tyrosine hydroxylase in human adrenal glands and human pheochromocytoma.
    Nagatsu T; Mizutani K; Sudo Y; Nagatsu I
    Clin Chim Acta; 1972 Jul; 39(2):417-24. PubMed ID: 4402930
    [No Abstract]   [Full Text] [Related]  

  • 5. Effects of lidocaine and etidocaine on the axoplasmic transport of catecholamine-synthesizing enzymes.
    Ngai SH; Dairman W; Marchelle M
    Anesthesiology; 1974 Dec; 41(6):542-8. PubMed ID: 4139909
    [No Abstract]   [Full Text] [Related]  

  • 6. Regulation of catecholamine turnover by variations of enzyme levels.
    Pletscher A
    Pharmacol Rev; 1972 Jun; 24(2):225-32. PubMed ID: 4404611
    [No Abstract]   [Full Text] [Related]  

  • 7. Catecholamine contents and activities of catecholamine synthesizing and inactivating enzymes in the salivary glands of young growing rats.
    Kuzuya H; Ikeno T; Ikeno K; Nemoto K; Hashimoto S
    Arch Oral Biol; 1980; 25(1):31-6. PubMed ID: 6105862
    [No Abstract]   [Full Text] [Related]  

  • 8. Regional changes in [3H]-noradrenaline uptake, catecholamines and catecholamine synthetic and catabolic enzymes in rat brain following neonatal 6-hydroxydopamine treatment.
    Jonsson G; Sachs C
    Med Biol; 1976 Aug; 54(4):286-97. PubMed ID: 8670
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Axoplasmic transport of enzymes involved in the synthesis of noradrenaline: relationship between the rate of transport and subcellular distribution.
    Thoenen H; Otten U; Oesch F
    Brain Res; 1973 Nov; 62(2):471-5. PubMed ID: 4128240
    [No Abstract]   [Full Text] [Related]  

  • 10. Intra-axonal transport of transmitters in mammalian neurons.
    Dahlström A; Heiwall PO
    J Neural Transm; 1975; Suppl 12():97-114. PubMed ID: 51044
    [No Abstract]   [Full Text] [Related]  

  • 11. Comparative effects of ethanol and malnutrition on the development of catecholamine neurons: changes in specific activities of enzymes.
    Detering N; Edwards E; Ozand P; Karahasan A
    J Neurochem; 1980 Feb; 34(2):297-304. PubMed ID: 6106048
    [No Abstract]   [Full Text] [Related]  

  • 12. Effects of colchicine and vinblastine on axonal transport of choline acetyltransferase in rat sciatic nerve.
    Dziegielewska KM; Saunders NR; Evans CA; Skacel PO; Häggendal CJ; Heiwall PO; Dahalström AB
    Acta Physiol Scand; 1976 Apr; 96(4):486-94. PubMed ID: 58540
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Local changes in subcellular distribution of dopamine-beta-hydroxylase (EC 1.14.2.1) after blockade of axonal transport.
    Brimijoin S
    J Neurochem; 1974 Mar; 22(3):347-53. PubMed ID: 4829961
    [No Abstract]   [Full Text] [Related]  

  • 14. Rapid axonal transport of tyrosine hydroxylase and dopamine- -hydroxylase.
    Coyle JT; Wooten GF
    Brain Res; 1972 Sep; 44(2):701-4. PubMed ID: 4116449
    [No Abstract]   [Full Text] [Related]  

  • 15. Catecholamine synthetic enzymes of spontaneously hypertensive rats and microbial hypotensive products.
    Nagatsu T; Mizutani K; Nagatsu I; Umezawa H; Matsuzaki M
    Mol Cell Biochem; 1973 May; 1(1):107-13. PubMed ID: 4154397
    [No Abstract]   [Full Text] [Related]  

  • 16. A comparison of the neural regulation of tyrosine hydroxylase activity in sympathetic ganglia of adult mice and rats.
    Hendry IA; Iversen LL; Black IB
    J Neurochem; 1973 Jun; 20(6):1683-9. PubMed ID: 4146315
    [No Abstract]   [Full Text] [Related]  

  • 17. Adrenergic enzymes in cultured mouse neuroblastoma: absence of detectable aromatic-L-amino-acid decarboxylase.
    Waymire JC; Gilmer-Waymire K
    J Neurochem; 1978 Sep; 31(3):693-8. PubMed ID: 28384
    [No Abstract]   [Full Text] [Related]  

  • 18. Tissue fractionation and catecholamines. II. Intracellular distribution patterns of tyrosine hydroxylase, dopa decarboxylase, dopamine-beta-hydroxylase, phenylethanolamine N-methyltransferase and monoamine oxidase in adrenal medulla.
    Laduron P; Belpaire F
    Biochem Pharmacol; 1968 Jul; 17(7):1127-40. PubMed ID: 4298204
    [No Abstract]   [Full Text] [Related]  

  • 19. Activity of catecholamine enzymes in vas deferens during nerve stimulation.
    Bhagat B; Dave T; Lee YC; Bryan RJ
    Am J Physiol; 1973 Jan; 224(1):46-9. PubMed ID: 4405151
    [No Abstract]   [Full Text] [Related]  

  • 20. A study of selected catecholamine metabolizing enzymes: a comparison of depressive suicides and alcoholic suicides with controls.
    Grote SS; Moses SG; Robins E; Hudgens RW; Croninger AB
    J Neurochem; 1974 Oct; 23(4):791-802. PubMed ID: 4154358
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 11.