These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

97 related articles for article (PubMed ID: 4124604)

  • 1. Serial in vivo determinations of nerve conduction velocity in rat tails. Physiological and pathological changes.
    Miyoshi T; Goto I
    Electroencephalogr Clin Neurophysiol; 1973 Aug; 35(2):125-31. PubMed ID: 4124604
    [No Abstract]   [Full Text] [Related]  

  • 2. Serial in vivo determination of motor conduction velocity in tails of allaxanized non-diabetic and diabetic rats.
    Goto I; Peters HA
    J Neurol Sci; 1974 Jun; 22(2):177-82. PubMed ID: 4829192
    [No Abstract]   [Full Text] [Related]  

  • 3. Sural nerve conduction velocity and refractory period in diabetics without clinical signs of neuropathy.
    Schütt P; Muche H; Lehmann HJ; Hielscher H
    Horm Metab Res Suppl; 1980; 9():39-42. PubMed ID: 6929776
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Influence of neurotropic vitamins on the nerve conduction velocity in diabetic neuropathy.
    Tong HI
    Ann Acad Med Singap; 1980 Jan; 9(1):65-70. PubMed ID: 7447382
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Potential clamp experiments on myelinated nerve fibres from alloxan diabetic rats.
    Brismar T
    Acta Physiol Scand; 1979 Mar; 105(3):384-6. PubMed ID: 443069
    [No Abstract]   [Full Text] [Related]  

  • 6. Inability of insulin to maintain normal nerve function during high-frequency stimulation in diabetic rat tail nerves.
    Andersen H; Nielsen JF; Nielsen VK
    Muscle Nerve; 1994 Jan; 17(1):80-4. PubMed ID: 8264706
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effects of chronic alpha-adrenergic receptor blockade on peripheral nerve conduction, hypoxic resistance, polyols, Na(+)-K(+)-ATPase activity, and vascular supply in STZ-D rats.
    Cameron NE; Cotter MA; Ferguson K; Robertson S; Radcliffe MA
    Diabetes; 1991 Dec; 40(12):1652-8. PubMed ID: 1661693
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Resistance of the diabetic rat nerve to ischemic inactivation.
    Jaramillo J; Simard-Duquesne N; Dvornik D
    Can J Physiol Pharmacol; 1985 Jul; 63(7):773-7. PubMed ID: 3930062
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Peripheral neuropathy in diabetic monkeys.
    Cornblath DR; Hillman MA; Striffler JS; Herman CN; Hansen BC
    Diabetes; 1989 Nov; 38(11):1365-70. PubMed ID: 2695371
    [TBL] [Abstract][Full Text] [Related]  

  • 10. High rat food vitamin E content improves nerve function in streptozotocin-diabetic rats.
    van Dam PS; Bravenboer B; van Asbeck BS; Marx JJ; Gispen WH
    Eur J Pharmacol; 1999 Jul; 376(3):217-22. PubMed ID: 10448879
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The role of cyclic adenosine 3',5'-monophosphate and polyol metabolism in diabetic neuropathy.
    Shindo H; Tawata M; Aida K; Onaya T
    J Clin Endocrinol Metab; 1992 Feb; 74(2):393-8. PubMed ID: 1370506
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Nerve conduction velocity and evoked potential latencies in streptozotocin-diabetic rats: effects of treatment with an angiotensin converting enzyme inhibitor.
    Manschot SM; Gispen WH; Kappelle LJ; Biessels GJ
    Diabetes Metab Res Rev; 2003; 19(6):469-77. PubMed ID: 14648806
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Beneficial effect of Org 2766 in treatment of peripheral neuropathy in streptozocin-induced diabetic rats.
    Van der Zee CE; Van der Hoop RG; Gispen WH
    Diabetes; 1989 Feb; 38(2):225-30. PubMed ID: 2536628
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Lipoic acid improves nerve blood flow, reduces oxidative stress, and improves distal nerve conduction in experimental diabetic neuropathy.
    Nagamatsu M; Nickander KK; Schmelzer JD; Raya A; Wittrock DA; Tritschler H; Low PA
    Diabetes Care; 1995 Aug; 18(8):1160-7. PubMed ID: 7587852
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Resistance to ischemic conduction block of the peripheral nerve in hyperglycemic rats: an electrophysiological study.
    Shirabe S; Kinoshita I; Matsuo H; Takashima H; Nakamura T; Tsujihata M; Nagataki S
    Muscle Nerve; 1988 Jun; 11(6):582-7. PubMed ID: 3386666
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Efficacy of benfotiamine versus thiamine on function and glycation products of peripheral nerves in diabetic rats.
    Stracke H; Hammes HP; Werkmann D; Mavrakis K; Bitsch I; Netzel M; Geyer J; Köpcke W; Sauerland C; Bretzel RG; Federlin KF
    Exp Clin Endocrinol Diabetes; 2001; 109(6):330-6. PubMed ID: 11571671
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Nodal gap substance in diabetic nerve.
    Seneviratne KN; Weerasuriya A
    J Neurol Neurosurg Psychiatry; 1974 May; 37(5):502-13. PubMed ID: 4276085
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Impairment of spinal cord conduction velocity in diabetic rats.
    Carsten RE; Whalen LR; Ishii DN
    Diabetes; 1989 Jun; 38(6):730-6. PubMed ID: 2656342
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effects of interleukin-6 treatment on neurovascular function, nerve perfusion and vascular endothelium in diabetic rats.
    Cotter MA; Gibson TM; Nangle MR; Cameron NE
    Diabetes Obes Metab; 2010 Aug; 12(8):689-99. PubMed ID: 20590746
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [Influence of thiamine, riboflavin and vitamin B6 diet content in pregnant rats, upon the content of these same vitamins in the maternal and fetal tissues].
    Leclerc J
    Ann Nutr Aliment; 1973; 27(4):213-23. PubMed ID: 4799807
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 5.