BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

140 related articles for article (PubMed ID: 412469)

  • 21. Genetics of methane and methanol oxidation in gram-negative methylotrophic bacteria.
    Barta TM; Hanson RS
    Antonie Van Leeuwenhoek; 1993-1994; 64(2):109-20. PubMed ID: 8092853
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Physiological studies of methane- and methanol-oxidizing bacteria: comparison of a primary alcohol dehydrogenase from Methylococcus capsulatus (Texas strain) and Pseudomonas species M27.
    Patel RN; Bose HR; Mandy WJ; Hoare DS
    J Bacteriol; 1972 May; 110(2):570-7. PubMed ID: 5022170
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Assimilation of oxalate, acetate, and CO2 by Oxalobacter formigenes.
    Cornick NA; Allison MJ
    Can J Microbiol; 1996 Nov; 42(11):1081-6. PubMed ID: 8941983
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Oxidative and assimilative enzyme activities in continuous cultures of the obligate methylotroph Methylobacillus flagellatum.
    Chistoserdova LV; Chistoserdov AY; Schklyar NL; Baev MV; Tsygankov YD
    Antonie Van Leeuwenhoek; 1991 Aug; 60(2):101-7. PubMed ID: 1804027
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Formate bound to cytochrome oxidase can be removed by cyanide and by reduction.
    Chang KT; Palmer G
    Biochim Biophys Acta; 1996 Dec; 1277(3):237-42. PubMed ID: 8982389
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Distribution of methanol carbon between assimilation and oxidation pathways in methanol-grown Pseudomonas C.
    Ben-Bassat A; Goldberg I; Mateles RI
    J Gen Microbiol; 1980 Jan; 116(1):213-23. PubMed ID: 6767806
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Single-carbon catabolism in acetogens: analysis of carbon flow in Acetobacterium woodii and Butyribacterium methylotrophicum by fermentation and 13C nuclear magnetic resonance measurement.
    Kerby R; Niemczura W; Zeikus JG
    J Bacteriol; 1983 Sep; 155(3):1208-18. PubMed ID: 6411684
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Synthesis of cell constituents by methane-grown Methylococcus capsulatus and Methanomonas methanooxidans.
    Lawrence AJ; Kemp MB; Quayle JR
    Biochem J; 1970 Feb; 116(4):631-9. PubMed ID: 5435492
    [TBL] [Abstract][Full Text] [Related]  

  • 29. New obligate methylotroph.
    Dahl JS; Mehta RJ; Hoare DS
    J Bacteriol; 1972 Feb; 109(2):916-21. PubMed ID: 4110149
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Degradation of methyl bromide by methanotrophic bacteria in cell suspensions and soils.
    Oremland RS; Miller LG; Culbertson CW; Connell TL; Jahnke L
    Appl Environ Microbiol; 1994 Oct; 60(10):3640-6. PubMed ID: 7986039
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Carbon source preference in chemosynthetic hot spring communities.
    Urschel MR; Kubo MD; Hoehler TM; Peters JW; Boyd ES
    Appl Environ Microbiol; 2015 Jun; 81(11):3834-47. PubMed ID: 25819970
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Oxidation of hydroxylamine by cytochrome P-460 of the obligate methylotroph Methylococcus capsulatus Bath.
    Zahn JA; Duncan C; DiSpirito AA
    J Bacteriol; 1994 Oct; 176(19):5879-87. PubMed ID: 7928947
    [TBL] [Abstract][Full Text] [Related]  

  • 33. [Action of polycarbon compounds on the oxidation of methanol and other Cl compounds by methylotrophic bacteria].
    Zakharova EV
    Nauchnye Doki Vyss Shkoly Biol Nauki; 1983; (6):83-7. PubMed ID: 6411135
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The carbon assimilation pathways of Methylococcus capsulatus, Pseudomonas methanica and Methylosinus trichosporium (OB3B) during growth on methane.
    Strom T; Ferenci T; Quayle JR
    Biochem J; 1974 Dec; 144(3):465-76. PubMed ID: 4377654
    [TBL] [Abstract][Full Text] [Related]  

  • 35. A low-molecular-mass protein from Methylococcus capsulatus (Bath) is responsible for the regulation of formaldehyde dehydrogenase activity in vitro.
    Tate S; Dalton H
    Microbiology (Reading); 1999 Jan; 145 ( Pt 1)():159-167. PubMed ID: 10206695
    [TBL] [Abstract][Full Text] [Related]  

  • 36. [Lithotrophic metabolic elements in the obligate methylotroph, Methylococcus thermophilus].
    Malashenko IuR; Sokolov IG; Romanovskaia VA; Shkurko IuB
    Mikrobiologiia; 1979; 48(4):592-8. PubMed ID: 225646
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Esters produced by Chalaropsis thielavioides.
    COLLINS RP; MORGAN ME
    Science; 1960 Mar; 131(3404):933-4. PubMed ID: 13811298
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Studies on the physiological significance of the lack of a pyruvate dehydrogenase complex in Hyphomicrobium sp.
    Harder W; Matin A; Attwood MM
    J Gen Microbiol; 1975 Feb; 86(2):319-26. PubMed ID: 1113081
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Methylamine dehydrogenase from the obligate methylotroph Methylomonas methylovora.
    Mehta RJ
    Can J Microbiol; 1977 Apr; 23(4):402-6. PubMed ID: 16690
    [TBL] [Abstract][Full Text] [Related]  

  • 40. The biosynthesis of sphingosine. II. The utilization of methyl-labeled acetate, formate, and ethanolamine.
    ZABIN I; MEAD JF
    J Biol Chem; 1954 Nov; 211(1):87-93. PubMed ID: 13211645
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.