These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
119 related articles for article (PubMed ID: 412476)
21. High-pressure systems for gas-phase free continuous incubation of enriched marine microbial communities performing anaerobic oxidation of methane. Deusner C; Meyer V; Ferdelman TG Biotechnol Bioeng; 2010 Feb; 105(3):524-33. PubMed ID: 19787639 [TBL] [Abstract][Full Text] [Related]
22. Evaluation of ferric oxide and ferric citrate for their effects on fermentation, production of sulfide and methane, and abundance of select microbial populations using in vitro rumen cultures. Wu H; Meng Q; Yu Z Bioresour Technol; 2016 Jul; 211():603-9. PubMed ID: 27043055 [TBL] [Abstract][Full Text] [Related]
23. Assessment of pH shock as a method for controlling sulfide and methane formation in pressure main sewer systems. Gutierrez O; Sudarjanto G; Ren G; Ganigué R; Jiang G; Yuan Z Water Res; 2014 Jan; 48():569-78. PubMed ID: 24210545 [TBL] [Abstract][Full Text] [Related]
24. Amorphous ferrous sulfide as a reducing agent for culture of anaerobes. Brock TD; Od'ea K Appl Environ Microbiol; 1977 Feb; 33(2):254-6. PubMed ID: 192144 [TBL] [Abstract][Full Text] [Related]
25. Denitrifying sulfide removal and carbon methanogenesis in a mesophilic, methanogenic culture. Wong BT; Lee DJ Bioresour Technol; 2011 Jun; 102(12):6673-9. PubMed ID: 21507619 [TBL] [Abstract][Full Text] [Related]
26. Methylthiol:coenzyme M methyltransferase from Methanosarcina barkeri, an enzyme of methanogenesis from dimethylsulfide and methylmercaptopropionate. Tallant TC; Krzycki JA J Bacteriol; 1997 Nov; 179(22):6902-11. PubMed ID: 9371433 [TBL] [Abstract][Full Text] [Related]
27. Reduction of produced elementary sulfur in denitrifying sulfide removal process. Zhou X; Liu L; Chen C; Ren N; Wang A; Lee DJ Appl Microbiol Biotechnol; 2011 May; 90(3):1129-36. PubMed ID: 21286712 [TBL] [Abstract][Full Text] [Related]
28. The role of tetrahydromethanopterin and cytoplasmic cofactor in methane synthesis. Sauer FD; Blackwell BA; Mahadevan S Biochem J; 1986 Apr; 235(2):453-8. PubMed ID: 3091008 [TBL] [Abstract][Full Text] [Related]
29. The proteins of Fusobacterium spp. involved in hydrogen sulfide production from L-cysteine. Basic A; Blomqvist M; Dahlén G; Svensäter G BMC Microbiol; 2017 Mar; 17(1):61. PubMed ID: 28288582 [TBL] [Abstract][Full Text] [Related]
30. Sulfide and methane production in sewer sediments. Liu Y; Ni BJ; Ganigué R; Werner U; Sharma KR; Yuan Z Water Res; 2015 Mar; 70():350-9. PubMed ID: 25543244 [TBL] [Abstract][Full Text] [Related]
31. Two pathways for cysteine biosynthesis in Leishmania major. Williams RA; Westrop GD; Coombs GH Biochem J; 2009 May; 420(3):451-62. PubMed ID: 19296828 [TBL] [Abstract][Full Text] [Related]
32. Cysteine persulfides and polysulfides produced by exchange reactions with H Koike S; Nishimoto S; Ogasawara Y Redox Biol; 2017 Aug; 12():530-539. PubMed ID: 28371750 [TBL] [Abstract][Full Text] [Related]
33. Nutritional features of the intestinal anaerobe Ruminococcus bromii. Herbeck JL; Bryant MP Appl Microbiol; 1974 Dec; 28(6):1018-22. PubMed ID: 4451362 [TBL] [Abstract][Full Text] [Related]
34. [Cysteine biosynthesis from serine and hydrogen sulfide]. SCHLOSSMANN K; LYNEN F Biochem Z; 1957; 328(7):591-4. PubMed ID: 13426154 [No Abstract] [Full Text] [Related]
35. [On the pathways of the enzymatic formation of hydrogen sulfide from L-cysteine in the liver]. GORIACHENKOVA EV Biokhimiia; 1961; 26():541-8. PubMed ID: 13707246 [No Abstract] [Full Text] [Related]
36. The effects of ionophores and metabolic inhibitors on methanogenesis and energy-related properties of Methanobacterium bryantii. Jarrell KF; Sprott GD Arch Biochem Biophys; 1983 Aug; 225(1):33-41. PubMed ID: 6311108 [TBL] [Abstract][Full Text] [Related]
37. Sulfide enhances methanogenesis in nitrate-containing methanogenic cultures. Wong BT; Lee DJ Bioresour Technol; 2011 Feb; 102(3):2427-32. PubMed ID: 21087858 [TBL] [Abstract][Full Text] [Related]
38. Physiological importance of the heterodisulfide of coenzyme M and 7-mercaptoheptanoylthreonine phosphate in the reduction of carbon dioxide to methane in Methanobacterium. Bobik TA; Wolfe RS Proc Natl Acad Sci U S A; 1988 Jan; 85(1):60-3. PubMed ID: 3124103 [TBL] [Abstract][Full Text] [Related]
39. Structural modifications and kinetic studies of the substrates involved in the final step of methane formation in Methanobacterium thermoautotrophicum. Olson KD; Chmurkowska-Cichowlas L; McMahon CW; Wolfe RS J Bacteriol; 1992 Feb; 174(3):1007-12. PubMed ID: 1732190 [TBL] [Abstract][Full Text] [Related]
40. Lead removal and toxicity reduction from industrial wastewater through biological sulfate reduction process. Teekayuttasakul P; Annachhatre AP J Environ Sci Health A Tox Hazard Subst Environ Eng; 2008 Oct; 43(12):1424-30. PubMed ID: 18780220 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]