These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

111 related articles for article (PubMed ID: 4127919)

  • 1. The effect of fuel composition on atmospheric aerosol due to auto exhaust.
    Wilson WE; Miller DF; Levy A; Stone PK
    J Air Pollut Control Assoc; 1973 Nov; 23(11):949-56. PubMed ID: 4127919
    [No Abstract]   [Full Text] [Related]  

  • 2. Effect of methanol on exhaust composition of a fuel containing toluene, n-heptane, and isooctane.
    Ninomiya JS; Golovoy A; Labana SS
    J Air Pollut Control Assoc; 1970 May; 20(5):314-7. PubMed ID: 4192535
    [No Abstract]   [Full Text] [Related]  

  • 3. Emission control devices, fuel additive, and fuel composition changes.
    Piver WT
    Environ Health Perspect; 1977 Aug; 19():309-16. PubMed ID: 71235
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Fuel composition and secondary organic aerosol formation: gas-turbine exhaust and alternative aviation fuels.
    Miracolo MA; Drozd GT; Jathar SH; Presto AA; Lipsky EM; Corporan E; Robinson AL
    Environ Sci Technol; 2012 Aug; 46(15):8493-501. PubMed ID: 22732009
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Polycyclic aromatic hydrocarbon emissions from the combustion of alternative fuels in a gas turbine engine.
    Christie S; Raper D; Lee DS; Williams PI; Rye L; Blakey S; Wilson CW; Lobo P; Hagen D; Whitefield PD
    Environ Sci Technol; 2012 Jun; 46(11):6393-400. PubMed ID: 22534092
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Secondary organic aerosol formation from photo-oxidation of unburned fuel: experimental results and implications for aerosol formation from combustion emissions.
    Jathar SH; Miracolo MA; Tkacik DS; Donahue NM; Adams PJ; Robinson AL
    Environ Sci Technol; 2013 Nov; 47(22):12886-93. PubMed ID: 24144104
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effects of fuel type, driving cycle, and emission status on in-use vehicle exhaust reactivity.
    Ho J; Winer AM
    J Air Waste Manag Assoc; 1998 Jul; 48(7):592-603. PubMed ID: 9706039
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [Polycyclic aromatic hydrocarbons in the exhaust gases of internal combustion engine, working with diverse commercial fuels].
    Candeli A; Mastrandrea V; Morozzi G
    Riv Ital Ig; 1970; 29(3):191-204. PubMed ID: 4103608
    [No Abstract]   [Full Text] [Related]  

  • 9. Formation mechanism of secondary organic aerosol from ozonolysis of gasoline vehicle exhaust.
    Yang B; Ma P; Shu J; Zhang P; Huang J; Zhang H
    Environ Pollut; 2018 Mar; 234():960-968. PubMed ID: 29665636
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Potential of secondary aerosol formation from Chinese gasoline engine exhaust.
    Du Z; Hu M; Peng J; Guo S; Zheng R; Zheng J; Shang D; Qin Y; Niu H; Li M; Yang Y; Lu S; Wu Y; Shao M; Shuai S
    J Environ Sci (China); 2018 Apr; 66():348-357. PubMed ID: 29628104
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effect of ethanol-gasoline blends on small engine generator energy efficiency and exhaust emission.
    Lin WY; Chang YY; Hsieh YR
    J Air Waste Manag Assoc; 2010 Feb; 60(2):142-8. PubMed ID: 20222526
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [Polar neutral organic compounds (POCN) in city aerosols. 2. Measuring of emissions from domestic fuel and vehicle exhaust and from immission particles in Berlin (West)].
    Moriske HJ; Freise R; Schneider C; Rüden H
    Zentralbl Bakteriol Mikrobiol Hyg B Umwelthyg Krankenhaushyg Arbeitshyg Prav Med; 1987 Oct; 185(1-2):72-104. PubMed ID: 2448974
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Two-stroke scooters are a dominant source of air pollution in many cities.
    Platt SM; Haddad IE; Pieber SM; Huang RJ; Zardini AA; Clairotte M; Suarez-Bertoa R; Barmet P; Pfaffenberger L; Wolf R; Slowik JG; Fuller SJ; Kalberer M; Chirico R; Dommen J; Astorga C; Zimmermann R; Marchand N; Hellebust S; Temime-Roussel B; Baltensperger U; Prévôt AS
    Nat Commun; 2014 May; 5():3749. PubMed ID: 24825457
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A comparison of emissions from vehicles fueled with diesel or compressed natural gas.
    Hesterberg TW; Lapin CA; Bunn WB
    Environ Sci Technol; 2008 Sep; 42(17):6437-45. PubMed ID: 18800512
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Fossil Fuel Combustion-Related Emissions Dominate Atmospheric Ammonia Sources during Severe Haze Episodes: Evidence from (15)N-Stable Isotope in Size-Resolved Aerosol Ammonium.
    Pan Y; Tian S; Liu D; Fang Y; Zhu X; Zhang Q; Zheng B; Michalski G; Wang Y
    Environ Sci Technol; 2016 Aug; 50(15):8049-56. PubMed ID: 27359161
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mutagenicity of diesel exhaust particles from two fossil and two plant oil fuels.
    Bünger J; Müller MM; Krahl J; Baum K; Weigel A; Hallier E; Schulz TG
    Mutagenesis; 2000 Sep; 15(5):391-7. PubMed ID: 10970444
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effects of toluene content in fuel on aromatic emissions in the exhaust.
    Ninomiya JS; Biggers B
    J Air Pollut Control Assoc; 1970 Sep; 20(9):609-11. PubMed ID: 4097412
    [No Abstract]   [Full Text] [Related]  

  • 18. Deactivation of automobile exhaust control catalyst.
    Yarrington RM; Bambrick WE
    J Air Pollut Control Assoc; 1970 Jun; 20(6):398-401. PubMed ID: 4192982
    [No Abstract]   [Full Text] [Related]  

  • 19. An evaluation of the fuel factor through direct measurement of photochemical reactivity of emissions.
    Dimitriades B; Eccleston BH; Hurn RW
    J Air Pollut Control Assoc; 1970 Mar; 20(3):150-60. PubMed ID: 4190851
    [No Abstract]   [Full Text] [Related]  

  • 20. Fuel factors in automotive tailpipe emissions.
    Rinehart WE; Gendernalik SA; Gilbert LF
    Am Ind Hyg Assoc J; 1971 Mar; 32(3):179-87. PubMed ID: 4101479
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 6.