These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

93 related articles for article (PubMed ID: 4129625)

  • 1. Electrophysiological correlates of discrete forelimb movements in rats.
    Megirian D; Buresová O; Bures J; Dimond S
    Electroencephalogr Clin Neurophysiol; 1974 Feb; 36(2):131-9. PubMed ID: 4129625
    [No Abstract]   [Full Text] [Related]  

  • 2. Changes in electrical thresholds for evoking movements from the cat cerebral cortex following lesions of the sensori-motor area.
    Ring A; Rajandran H; Harvey A; Ghosh S
    Somatosens Mot Res; 2004 Jun; 21(2):117-36. PubMed ID: 15370092
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Distinct Laterality in Forelimb-Movement Representations of Rat Primary and Secondary Motor Cortical Neurons with Intratelencephalic and Pyramidal Tract Projections.
    Soma S; Saiki A; Yoshida J; Ríos A; Kawabata M; Sakai Y; Isomura Y
    J Neurosci; 2017 Nov; 37(45):10904-10916. PubMed ID: 28972128
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Distinct Functional Modules for Discrete and Rhythmic Forelimb Movements in the Mouse Motor Cortex.
    Hira R; Terada S; Kondo M; Matsuzaki M
    J Neurosci; 2015 Sep; 35(39):13311-22. PubMed ID: 26424880
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Precentral neuron activity associated with ipsilateral forelimb movements in monkeys.
    Matsunami K; Hamada I
    J Physiol (Paris); 1978; 74(3):319-22. PubMed ID: 102780
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cortical field potentials preceding self-paced forelimb movements and influences of cerebellectomy upon them in rats.
    Ohishi H; Ichikawa J; Matsuzaki R; Kyuhou Si; Matsuura-Nakao K; Seki T; Gemba H
    Neurosci Lett; 2003 Nov; 352(1):5-8. PubMed ID: 14615036
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cortical motor potential in monkeys before and after upper limb deafferentation.
    Vaughan HG; Gross EG; Bossom J
    Exp Neurol; 1970 Feb; 26(2):253-62. PubMed ID: 4984217
    [No Abstract]   [Full Text] [Related]  

  • 8. Electrophysiological correlates of discrete forelimb movements in rats.
    Megirian D; Bures J; Buresová O; Dimond S
    Act Nerv Super (Praha); 1973 Mar; 15(1):3-4. PubMed ID: 4698099
    [No Abstract]   [Full Text] [Related]  

  • 9. Evidence for bilateral control of skilled movements: ipsilateral skilled forelimb reaching deficits and functional recovery in rats follow motor cortex and lateral frontal cortex lesions.
    Gonzalez CL; Gharbawie OA; Williams PT; Kleim JA; Kolb B; Whishaw IQ
    Eur J Neurosci; 2004 Dec; 20(12):3442-52. PubMed ID: 15610177
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Distribution of slow cortical potentials preceding self-paced hand and hindlimb movements in the premotor and motor areas of monkeys.
    Hashimoto S; Gemba H; Sasaki K
    Brain Res; 1981 Nov; 224(2):247-59. PubMed ID: 7284842
    [TBL] [Abstract][Full Text] [Related]  

  • 11. HCN channels segregate stimulation-evoked movement responses in neocortex and allow for coordinated forelimb movements in rodents.
    Boychuk JA; Farrell JS; Palmer LA; Singleton AC; Pittman QJ; Teskey GC
    J Physiol; 2017 Jan; 595(1):247-263. PubMed ID: 27568501
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Sequential representation of voluntary movement in cortical macropotentials: direct control of behavior by operant conditioning of wave amplitude.
    Rosenfeld JP; Fox SS
    J Neurophysiol; 1972 Nov; 35(6):879-91. PubMed ID: 4676051
    [No Abstract]   [Full Text] [Related]  

  • 13. Spatial cortical patterns of metabolic activity in monkeys performing a visually guided reaching task with one forelimb.
    Savaki HE; Raos VC; Dalezios Y
    Neuroscience; 1997 Feb; 76(4):1007-34. PubMed ID: 9027864
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Comparison of electrical thresholds for evoking movements from sensori-motor areas of the cat cerebral cortex and its relation to motor training.
    Ghosh S; Koh AH; Ring A
    Somatosens Mot Res; 2004 Jun; 21(2):99-115. PubMed ID: 15370091
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Suppression of activity in the forelimb motor cortex temporarily enlarges forelimb representation in the homotopic cortex in adult rats.
    Maggiolini E; Viaro R; Franchi G
    Eur J Neurosci; 2008 May; 27(10):2733-46. PubMed ID: 18547253
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Large-scale analysis reveals populational contributions of cortical spike rate and synchrony to behavioural functions.
    Kimura R; Saiki A; Fujiwara-Tsukamoto Y; Sakai Y; Isomura Y
    J Physiol; 2017 Jan; 595(1):385-413. PubMed ID: 27488936
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Readiness potential and movement initiation in the rat.
    Seki T; Gemba H; Matsuzaki R; Nakao K
    Jpn J Physiol; 2005 Feb; 55(1):1-9. PubMed ID: 15796784
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [Electrographic correlates of "inner states" caused by positive conditioned stimuli in the course of instrumental conditioning in dogs].
    Dumenko NV; Kozlov MK
    Zh Vyssh Nerv Deiat Im I P Pavlova; 2004; 54(3):352-62. PubMed ID: 15326950
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Differential contribution of motor cortex and caudate nucleus to instrumental tongue-forelimb synchronization in rats: a functional ablation study.
    Zhuravin IA; Brozek G; Bures J
    Neuroscience; 1994 Jan; 58(1):193-200. PubMed ID: 8159293
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Large-scale reorganization of corticofugal fibers after neonatal hemidecortication for functional restoration of forelimb movements.
    Takahashi M; Vattanajun A; Umeda T; Isa K; Isa T
    Eur J Neurosci; 2009 Nov; 30(10):1878-87. PubMed ID: 19895560
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.