These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

106 related articles for article (PubMed ID: 4130022)

  • 61. A membrane-bound phospholipase A1 purified from Escherichia coli.
    Scandella CJ; Kornberg A
    Biochemistry; 1971 Nov; 10(24):4447-56. PubMed ID: 4946924
    [No Abstract]   [Full Text] [Related]  

  • 62. Comparative biochemical characterization of nitrile-forming proteins from plants and insects that alter myrosinase-catalysed hydrolysis of glucosinolates.
    Burow M; Markert J; Gershenzon J; Wittstock U
    FEBS J; 2006 Jun; 273(11):2432-46. PubMed ID: 16704417
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Purification and characterization of a novel beta-agarase, AgaA34, from Agarivorans albus YKW-34.
    Fu XT; Lin H; Kim SM
    Appl Microbiol Biotechnol; 2008 Feb; 78(2):265-73. PubMed ID: 18071641
    [TBL] [Abstract][Full Text] [Related]  

  • 64. A new type of enzyme, and exo-splitting -1,3 glucanase from non-induced cultures of Aspergillus nidulans.
    Zonneveld BJ
    Biochim Biophys Acta; 1972 Feb; 258(2):541-7. PubMed ID: 4622000
    [No Abstract]   [Full Text] [Related]  

  • 65. Purification and characterization of glucose-6-phosphate isomerase from Bacillus stearothermophilus.
    Muramatsu N; Noso Y
    Arch Biochem Biophys; 1971 May; 144(1):245-52. PubMed ID: 5117529
    [No Abstract]   [Full Text] [Related]  

  • 66. Purification and characterization of an extracellular exo-D-galacturonanase of Aspergillus niger.
    Heinrichová K; Rexová-Benková L
    Biochim Biophys Acta; 1976 Feb; 422(2):349-56. PubMed ID: 2310
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Purification and properties of 4-L-aspartylglycosylamine amidohydrolase from hog kidney.
    Kono M; Yamashina I
    Biochim Biophys Acta; 1972 Feb; 258(2):600-17. PubMed ID: 5010303
    [No Abstract]   [Full Text] [Related]  

  • 68. Trehalase activity in Selaginella martensii.
    Roberts RM; Tovey KC
    Arch Biochem Biophys; 1969 Sep; 133(2):408-12. PubMed ID: 4898016
    [No Abstract]   [Full Text] [Related]  

  • 69. [Stereospecific enzymic degradation of glucopyranosyl-galactopyranosyl-hydroxylysine from the collagen of the aorta (author's transl)].
    Pott G; Henkel W; Werries E
    Hoppe Seylers Z Physiol Chem; 1974 Jul; 355(7):787-96. PubMed ID: 4435753
    [No Abstract]   [Full Text] [Related]  

  • 70. Control of plant cell enlargement by hydrogen ions.
    Rayle DL; Cleland R
    Curr Top Dev Biol; 1977; 11():187-214. PubMed ID: 20280
    [No Abstract]   [Full Text] [Related]  

  • 71. Enhancing health-promoting isothiocyanates in Chinese kale sprouts via manipulating
    Miao H; Xia C; Yu S; Wang J; Zhao Y; Wang Q
    Hortic Res; 2023 Apr; 10(4):uhad029. PubMed ID: 37090092
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Genome-Wide Identification and Expression Analysis of ESPs and NSPs Involved in Glucosinolate Hydrolysis and Insect Attack Defense in Chinese Cabbage (
    Han D; Tan J; Yue Z; Tao P; Lei J; Zang Y; Hu Q; Wang H; Zhang S; Li B; Zhao Y
    Plants (Basel); 2023 Mar; 12(5):. PubMed ID: 36903983
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Deletion of the lactoperoxidase gene causes multisystem inflammation and tumors in mice.
    Yamakaze J; Lu Z
    Sci Rep; 2021 Jun; 11(1):12429. PubMed ID: 34127712
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Molecular Modeling of Epithiospecifier and Nitrile-Specifier Proteins of Broccoli and Their Interaction with Aglycones.
    Román J; González D; Inostroza M; Mahn A
    Molecules; 2020 Feb; 25(4):. PubMed ID: 32054008
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Identification and Characterization of Three Epithiospecifier Protein Isoforms in
    Witzel K; Abu Risha M; Albers P; Börnke F; Hanschen FS
    Front Plant Sci; 2019; 10():1552. PubMed ID: 31921230
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Structural diversification during glucosinolate breakdown: mechanisms of thiocyanate, epithionitrile and simple nitrile formation.
    Eisenschmidt-Bönn D; Schneegans N; Backenköhler A; Wittstock U; Brandt W
    Plant J; 2019 Jul; 99(2):329-343. PubMed ID: 30900313
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Iron is a centrally bound cofactor of specifier proteins involved in glucosinolate breakdown.
    Backenköhler A; Eisenschmidt D; Schneegans N; Strieker M; Brandt W; Wittstock U
    PLoS One; 2018; 13(11):e0205755. PubMed ID: 30395611
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Isothiocyanates, Nitriles, and Epithionitriles from Glucosinolates Are Affected by Genotype and Developmental Stage in
    Hanschen FS; Schreiner M
    Front Plant Sci; 2017; 8():1095. PubMed ID: 28690627
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Optimizing isothiocyanate formation during enzymatic glucosinolate breakdown by adjusting pH value, temperature and dilution in Brassica vegetables and Arabidopsis thaliana.
    Hanschen FS; Klopsch R; Oliviero T; Schreiner M; Verkerk R; Dekker M
    Sci Rep; 2017 Jan; 7():40807. PubMed ID: 28094342
    [TBL] [Abstract][Full Text] [Related]  

  • 80. The crystal structure of the thiocyanate-forming protein from Thlaspi arvense, a kelch protein involved in glucosinolate breakdown.
    Gumz F; Krausze J; Eisenschmidt D; Backenköhler A; Barleben L; Brandt W; Wittstock U
    Plant Mol Biol; 2015 Sep; 89(1-2):67-81. PubMed ID: 26260516
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.