These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

154 related articles for article (PubMed ID: 4133306)

  • 21. Differential effects of mercurial reagents on membrane thiols and on the permeability of the heart mitochondrion.
    Scott KM; Knight VA; Settlemire CT; Brierley GP
    Biochemistry; 1970 Feb; 9(4):714-24. PubMed ID: 5417392
    [No Abstract]   [Full Text] [Related]  

  • 22. Induction of transmembrane proton transfer by mercurials in mitochondria. II. Release of a Na+-K+ ionophore.
    Southard JH; Blondin GA; Green DE
    J Biol Chem; 1974 Feb; 249(3):678-81. PubMed ID: 4130102
    [No Abstract]   [Full Text] [Related]  

  • 23. Electrochemical proton gradient and phosphate potential in bacterial chromatophores.
    Casadio R; Baccarini Melandri A; Zannoni D; Melandri BA
    FEBS Lett; 1974 Dec; 49(2):203-7. PubMed ID: 4442600
    [No Abstract]   [Full Text] [Related]  

  • 24. Model translocators for divalent and monovalent ion transport in phospholipid membranes. II. The effects of ion translocator X-537A on the energy-conserving properties of mitochondrial membranes.
    Estrada S; Célis H; Calderón E; Gallo G; Montal M
    J Membr Biol; 1974; 18(3-4):201-18. PubMed ID: 4278782
    [No Abstract]   [Full Text] [Related]  

  • 25. Energy-linked ion translocation in submitochondrial particles. 3. Transport of monovalent cations by submitochondrial particles.
    Cockrell RS
    J Biol Chem; 1973 Oct; 248(19):6828-33. PubMed ID: 4795660
    [No Abstract]   [Full Text] [Related]  

  • 26. Effects of guanidine derivatives on mitochondrial function. 3. The mechanism of phenethylbiguanide accumulation and its relationship to in vitro respiratory inhibition.
    Davidoff F
    J Biol Chem; 1971 Jun; 246(12):4017-27. PubMed ID: 5561472
    [No Abstract]   [Full Text] [Related]  

  • 27. Effect of phospholipases on the structure and function of mitochondria.
    Burstein C; Loyter A; Racker E
    J Biol Chem; 1971 Jun; 246(12):4075-82. PubMed ID: 4104710
    [No Abstract]   [Full Text] [Related]  

  • 28. Studies on the role of Mg 2+ and the Mg 2+ -stimulated adenosine triphosphatase in oxidative phosphorylation.
    Chao DL; Davis EJ
    Biochemistry; 1972 May; 11(10):1943-52. PubMed ID: 4260247
    [No Abstract]   [Full Text] [Related]  

  • 29. Control of adenine nucleotide exchange in mitochondria by cations and protons.
    Meisner H
    Biochemistry; 1971 Sep; 10(19):3485-91. PubMed ID: 5146568
    [No Abstract]   [Full Text] [Related]  

  • 30. The effect of fatty acids on the synthesis of P-enolpyruvate by human liver mitochondria.
    Jomain-Baum M; Hanson RW
    FEBS Lett; 1973 Jan; 29(2):145-8. PubMed ID: 4719200
    [No Abstract]   [Full Text] [Related]  

  • 31. Effect of lysolecithin treatment on the structure and functions of the mitochondrial inner membrane.
    Komai H; Hunter DR; Takahashi Y
    Biochem Biophys Res Commun; 1973 Jul; 53(1):82-9. PubMed ID: 4741559
    [No Abstract]   [Full Text] [Related]  

  • 32. Swelling and contraction of heart mitochondria suspended in ammonium chloride.
    Brierley GP; Stoner CD
    Biochemistry; 1970 Feb; 9(4):708-13. PubMed ID: 5417391
    [No Abstract]   [Full Text] [Related]  

  • 33. Carrier-mediated transport of metabolites in mitochondria.
    Fonyó A; Palmieri F; Quagliariello E
    Horiz Biochem Biophys; 1976; 2():60-105. PubMed ID: 776773
    [No Abstract]   [Full Text] [Related]  

  • 34. Analysis of the reactivity of SH-reagents with the mitochondrial phosphate carrier.
    Klingenberg M; Durand R; Guérin B
    Eur J Biochem; 1974 Feb; 42(1):135-50. PubMed ID: 4830186
    [No Abstract]   [Full Text] [Related]  

  • 35. Control of the energy coupling modes in mitochondria by mercurials.
    Southard JH; Green DE
    Biochem Biophys Res Commun; 1974 Dec; 61(4):1310-6. PubMed ID: 4477015
    [No Abstract]   [Full Text] [Related]  

  • 36. The phosphorylation potential generated by respiring mitochondria.
    Slater EC; Rosing J; Mol A
    Biochim Biophys Acta; 1973 Apr; 292(3):534-53. PubMed ID: 4705444
    [No Abstract]   [Full Text] [Related]  

  • 37. Respiratory control and mitochondrial monovalent cation permeability of isolated liver cells.
    Dubinsky WP; Cockrell RS
    Biochem Biophys Res Commun; 1974 Jan; 56(2):415-22. PubMed ID: 4823874
    [No Abstract]   [Full Text] [Related]  

  • 38. Ionophore-mediated coupling between ion fluxes and amino acid absorption in mouse ascites-tumour cells. Restoration of the physiological gradients of methionine by valinomycin in the absence of adenosine triphosphate.
    Reid M; Gibb LE; Eddy AA
    Biochem J; 1974 Jun; 140(3):383-93. PubMed ID: 4141255
    [TBL] [Abstract][Full Text] [Related]  

  • 39. The control of tricarboxylate-cycle oxidations in blowfly flight muscle. The steady-state concentrations of citrate, isocitrate 2-oxoglutarate and malate in flight muscle and isolated mitochondria.
    Johnson RN; Hansford RG
    Biochem J; 1975 Mar; 146(3):527-35. PubMed ID: 1147907
    [TBL] [Abstract][Full Text] [Related]  

  • 40. [Functional changes in the heart in experimental microcirculatory disorders].
    Chernukh AM; Vakar MD; Aleksandrov PN; Chernysheva GV; Stoĭda LV
    Kardiologiia; 1971 Nov; 11(11):10-5. PubMed ID: 5146458
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.