These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Histochemical types and sizes of fibres in normal human muscles. A biopsy study. Edström L; Nyström B Acta Neurol Scand; 1969; 45(3):257-69. PubMed ID: 4185305 [No Abstract] [Full Text] [Related]
3. Time course for refilling of glycogen stores in human muscle fibres following exercise-induced glycogen depletion. Piehl K Acta Physiol Scand; 1974 Feb; 90(2):297-302. PubMed ID: 4274636 [No Abstract] [Full Text] [Related]
4. Glycogen storage and glycogen synthetase activity in trained and untrained muscle of man. Piehl K; Adolfsson S; Nazar K Acta Physiol Scand; 1974 Apr; 90(4):779-88. PubMed ID: 4134050 [No Abstract] [Full Text] [Related]
5. Glycogen depletion pattern in muscle fibres of trotting horses. Lindholm A; Bjerneld H; Saltin B Acta Physiol Scand; 1974 Feb; 90(2):475-84. PubMed ID: 4132645 [No Abstract] [Full Text] [Related]
6. The correlation of histochemistry and speed of contraction in cat jaw muscles. Bosley MA; Cody FW; Taylor A J Physiol; 1972 Jul; 224(2):92P-94P. PubMed ID: 4262775 [No Abstract] [Full Text] [Related]
7. Glycogen storage and depletion in human skeletal muscle fibres. Piehl K Acta Physiol Scand Suppl; 1974; 402():1-32. PubMed ID: 4134591 [No Abstract] [Full Text] [Related]
8. Varieties of fast and slow extrafusal muscle fibres in amphibian hind limb muscles. Smith RS; Ovalle WK J Anat; 1973 Oct; 116(Pt 1):1-24. PubMed ID: 4273105 [No Abstract] [Full Text] [Related]
10. Fine structure of single fibres of human skeletal muscle. Wroblewski R; Jansson E Cell Tissue Res; 1975 Aug; 161(4):471-6. PubMed ID: 126117 [TBL] [Abstract][Full Text] [Related]
11. New insights into skeletal muscle fibre types in the dog with particular focus towards hybrid myosin phenotypes. Acevedo LM; Rivero JL Cell Tissue Res; 2006 Feb; 323(2):283-303. PubMed ID: 16163488 [TBL] [Abstract][Full Text] [Related]
12. Glycogen depletion patterns in human skeletal muscle fibers during prolonged work. Gollnick PD; Armstrong RB; Saubert CW; Sembrowich WL; Shepherd RE; Saltin B Pflugers Arch; 1973 Nov; 344(1):1-12. PubMed ID: 4272644 [No Abstract] [Full Text] [Related]
13. Differential changes in type I and type II muscle fibres in rheumatoid arthritis. A biopsy study. Edström L; Nordemar R Scand J Rheumatol; 1974; 3(3):155-60. PubMed ID: 4139752 [No Abstract] [Full Text] [Related]
14. Effect of training with eccentric muscle contractions on skeletal muscle metabolites. Bonde-Petersen F; Henriksson J; Knuttgen HG Acta Physiol Scand; 1973 Aug; 88(4):564-70. PubMed ID: 4765602 [No Abstract] [Full Text] [Related]
15. Development of muscle fibers in the fetal pig. Ashmore CR; Addis PB; Doerr L J Anim Sci; 1973 Jun; 36(6):1088-93. PubMed ID: 4268264 [No Abstract] [Full Text] [Related]
16. Myofibrillar ATPase as a determining factor for contraction velocity, and its changes upon experimental cross-innervation. Buller AJ; Mommaerts WF J Physiol; 1969 Mar; 201(1):46P-47P. PubMed ID: 4237613 [No Abstract] [Full Text] [Related]
17. A histochemical study of twitch and tonus fibers. Lee SY J Morphol; 1971 Mar; 133(3):253-71. PubMed ID: 4100696 [No Abstract] [Full Text] [Related]
18. Effects of long-term physical training and detraining on enzyme histochemical and functional skeletal muscle characteristic in man. Larsson L; Ansved T Muscle Nerve; 1985 Oct; 8(8):714-22. PubMed ID: 2932641 [TBL] [Abstract][Full Text] [Related]
19. Skeletal muscle glycogen stores after submaximal and maximal work. Taylor AW; Lappage R; Rao S Med Sci Sports; 1971; 3(2):75-8. PubMed ID: 5095725 [No Abstract] [Full Text] [Related]
20. A study of mammalian intrafusal muscle fibres using a combined histochemical and ultrastructural technique. Banks RW; Harker DW; Stacey MJ J Anat; 1977 Jul; 123(Pt 3):783-96. PubMed ID: 142074 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]