These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

109 related articles for article (PubMed ID: 4134835)

  • 1. Polarization of the 515 nm effect on chloroplasts oriented by a magnetic field.
    Breton J; Mathis P
    Biochem Biophys Res Commun; 1974 Jun; 58(4):1071-8. PubMed ID: 4134835
    [No Abstract]   [Full Text] [Related]  

  • 2. Polarized light spectroscopy of photosynthetic membranes in magneto-oriented whole cells and chloroplasts. Fluorescence and dichroism.
    Geacintov NE; van Nostrand F; Becker JF
    Biochim Biophys Acta; 1974 Jun; 347(3):443-63. PubMed ID: 4210309
    [No Abstract]   [Full Text] [Related]  

  • 3. Properties of photoreductions by photosystem II in isolated chloroplasts. 3. The effect of uncouplers on phenylenediamine shuttles accross the membrane in the presence of dibromothymoquinone.
    Trebst A; Reimer S
    Biochim Biophys Acta; 1973 Dec; 325(3):546-57. PubMed ID: 4130441
    [No Abstract]   [Full Text] [Related]  

  • 4. Dichroism of transient absorbance changes in the red spectral region using oriented chloroplasts. I. Field indicating absorbance changes.
    Breton J; Paillotin G
    Biochim Biophys Acta; 1977 Jan; 459(1):58-65. PubMed ID: 831783
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Photoselection studies on the orientation of chlorophyll a1 in the functional membrane of photosynthesis.
    Junge W; Eckhof A
    Biochim Biophys Acta; 1974 Jul; 357(1):103-17. PubMed ID: 4415060
    [No Abstract]   [Full Text] [Related]  

  • 6. Dichroism of transient absorbance changes in the red spectral region using oriented chloroplasts. II. P-700 absorbance changes.
    Breton J
    Biochim Biophys Acta; 1977 Jan; 459(1):66-75. PubMed ID: 831784
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Electrical evidence for the field indicating absorption change in bioenergetic membranes.
    Witt HT; Zickler A
    FEBS Lett; 1973 Dec; 37(2):307-10. PubMed ID: 4763338
    [No Abstract]   [Full Text] [Related]  

  • 8. The effect of temperature on the fluorescence kinetics of spinach chloroplasts.
    Thorne SW; Boardman NK
    Biochim Biophys Acta; 1971 Apr; 234(1):113-25. PubMed ID: 5560359
    [No Abstract]   [Full Text] [Related]  

  • 9. The fluorescence lifetime and energy migration mechanism in photosystem I of plants.
    Borisov AY; Il'ina MD
    Biochim Biophys Acta; 1973 May; 305(2):364-71. PubMed ID: 4741135
    [No Abstract]   [Full Text] [Related]  

  • 10. The effect of illuminating spinach chloroplasts on their membrane permeability, measured by a dielectric dispersion technique.
    Gordon W
    J Membr Biol; 1972; 10(2):193-205. PubMed ID: 4669447
    [No Abstract]   [Full Text] [Related]  

  • 11. Flash-induced 515 nm absorbance change in chloroplasts with various granum contents.
    Roux E; Faludi-dániel A
    Biochim Biophys Acta; 1977 Jul; 461(1):25-30. PubMed ID: 69439
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Proton evolution associated with the photooxidation of water in photosynthesis.
    Fowler CF; Kok B
    Biochim Biophys Acta; 1974 Aug; 357(2):299-307. PubMed ID: 4138690
    [No Abstract]   [Full Text] [Related]  

  • 13. [Effect of deuteration on the gramicidin-sensitive electron-transport reactions in chloroplasts].
    Bulychev AA; Niazova MM; Turovetskiĭ VB
    Biokhimiia; 1983 May; 48(5):857-60. PubMed ID: 6191783
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Light-dependent ethylene production by isolated chloroplasts.
    Elstner E; Konze JR
    FEBS Lett; 1974 Sep; 45(1):18-21. PubMed ID: 4414480
    [No Abstract]   [Full Text] [Related]  

  • 15. Pigment systems and electron transport in chloroplasts. I. Quantum requirements for the two light reactions in spinach chloroplasts.
    Sun AS; Sauer K
    Biochim Biophys Acta; 1971 Jun; 234(3):399-414. PubMed ID: 4399020
    [No Abstract]   [Full Text] [Related]  

  • 16. Chlorophyll fluorescence as a probe for the determination of the photo-induced proton gradient in isolated chloroplasts.
    Briantais JM; Vernotte C; Picaud M; Krause GH
    Biochim Biophys Acta; 1980 Jun; 591(1):198-202. PubMed ID: 6155943
    [TBL] [Abstract][Full Text] [Related]  

  • 17. On the orientation of chlorophyll-a1 in the functional membrane of photosynthesis.
    Junge W; Eckhof A
    FEBS Lett; 1973 Oct; 36(2):207-12. PubMed ID: 4754264
    [No Abstract]   [Full Text] [Related]  

  • 18. Freeze-fracture studies of photosynthetically deficient "supergranal" chloroplasts in tissue cultures containing virus-like particles.
    Sjolund RD; Smith DD
    J Cell Biol; 1974 Jan; 60(1):285-92. PubMed ID: 4809243
    [No Abstract]   [Full Text] [Related]  

  • 19. Dichroism of chlorophyll aI absorption change at 700 nm using chloroplastsoriented in a magnetic field.
    Breton J; Roux E; Whitmarsh J
    Biochem Biophys Res Commun; 1975 Jun; 64(4):L274-7. PubMed ID: 1137590
    [No Abstract]   [Full Text] [Related]  

  • 20. Circular polarization of fluorescence of chlorophyll in solution and in native structures.
    Gafni A; Hardt H; Schlessinger J; Steinberg IZ
    Biochim Biophys Acta; 1975 May; 387(2):256-64. PubMed ID: 1125291
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.