These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
74 related articles for article (PubMed ID: 413506)
21. An electron microscopic study of primary afferent terminals from slowly adapting type I receptors in the cat. Semba K; Masarachia P; Malamed S; Jacquin M; Harris S; Yang G; Egger MD J Comp Neurol; 1983 Dec; 221(4):466-81. PubMed ID: 6662983 [TBL] [Abstract][Full Text] [Related]
22. Location and completeness of reinnervation by two types of neurons at a single target: the feline muscle spindle. DeSantis M; Norman WP J Comp Neurol; 1993 Oct; 336(1):66-76. PubMed ID: 8254114 [TBL] [Abstract][Full Text] [Related]
23. The termination pattern and postsynaptic targets of rubrospinal fibers in the rat spinal cord: a light and electron microscopic study. Antal M; Sholomenko GN; Moschovakis AK; Storm-Mathisen J; Heizmann CW; Hunziker W J Comp Neurol; 1992 Nov; 325(1):22-37. PubMed ID: 1484116 [TBL] [Abstract][Full Text] [Related]
24. [Morphological base of Renshaw inhibition studied by light and electron microscopic histochemistry. Topograhic analysis of AChE-positive Renshaw elements]. Kókai G; Karcsú S; Tóth L Morphol Igazsagugyi Orv Sz; 1978 Apr; 18(2):136-42. PubMed ID: 714047 [TBL] [Abstract][Full Text] [Related]
25. [Ultrastructural features of gap junction type synapses in the motor nuclei of the frog spinal cord]. Motorina MV Arkh Anat Gistol Embriol; 1978 Jul; 75(7):27-34. PubMed ID: 687124 [TBL] [Abstract][Full Text] [Related]
26. Motor neuron involvement in experimental lumbar nerve root compression: a light and electron microscopic study. Kobayashi S; Uchida K; Yayama T; Takeno K; Miyazaki T; Shimada S; Kubota M; Nomura E; Meir A; Baba H Spine (Phila Pa 1976); 2007 Mar; 32(6):627-34. PubMed ID: 17413466 [TBL] [Abstract][Full Text] [Related]
27. Changes in motor nerve terminals following proximal constriction by a ligature. Miura H; Baba M; Matsunaga M; Oda K J Peripher Nerv Syst; 1997; 2(1):70-6. PubMed ID: 10975738 [TBL] [Abstract][Full Text] [Related]
28. GABA- and glycine-immunoreactive neurons in the spinal cord of the carp, Cyprinus carpio. Uematsu K; Shirasaki M; Storm-Mathisen J J Comp Neurol; 1993 Jun; 332(1):59-68. PubMed ID: 8514921 [TBL] [Abstract][Full Text] [Related]
29. Organization of glutamate-like immunoreactivity in the rat superficial dorsal horn: light and electron microscopic observations. Miller KE; Clements JR; Larson AA; Beitz AJ Synapse; 1988; 2(1):28-36. PubMed ID: 2901792 [TBL] [Abstract][Full Text] [Related]
30. White-matter dendrites in the upper cervical spinal cord of the adult cat: a light and electron microscopic study. Rose PK; Richmond FJ J Comp Neurol; 1981 Jun; 199(2):191-203. PubMed ID: 7251939 [TBL] [Abstract][Full Text] [Related]
31. Immunocytochemical localization of glutamate decarboxylase in rat spinal cord. McLaughlin BJ; Barber R; Saito K; Roberts E; Wu JY J Comp Neurol; 1975 Dec; 164(3):305-21. PubMed ID: 1184786 [TBL] [Abstract][Full Text] [Related]
32. Experimental degeneration of motor and sensory cortical terminals in the cuneate nucleus of the monkey (Macaca fascicularis). Wen CY; Wong WC; Tan CK J Anat; 1980 Jan; 130(Pt 1):13-23. PubMed ID: 6767675 [TBL] [Abstract][Full Text] [Related]
33. Thyrotropin-releasing hormone-immunoreactive nerve terminals synapse on the dendrites of gastric vagal motoneurons in the rat. Rinaman L; Miselis RR J Comp Neurol; 1990 Apr; 294(2):235-51. PubMed ID: 2110196 [TBL] [Abstract][Full Text] [Related]
34. The spinal terminals into the midbrain periaqueductal gray of the rat. A light and electron microscope study of the projections ascending via the ventro-lateral funiculus. Bianchi R; Tredici G; Gioia M J Hirnforsch; 1990; 31(3):349-58. PubMed ID: 2230104 [TBL] [Abstract][Full Text] [Related]
35. Calcium-binding proteins, parvalbumin- and calbindin-D 28k-immunoreactive neurons in the rat spinal cord and dorsal root ganglia: a light and electron microscopic study. Antal M; Freund TF; Polgár E J Comp Neurol; 1990 May; 295(3):467-84. PubMed ID: 2351764 [TBL] [Abstract][Full Text] [Related]
36. [Synaptic organization of supraspinal control of the propriospinal neurons of the ventral horn of the cat and monkey spinal cord]. Kozhanov VM; Shapovalov AI Neirofiziologiia; 1977; 9(2):177-84. PubMed ID: 870843 [TBL] [Abstract][Full Text] [Related]
37. Proliferation of SP- and 5HT-containing terminals in lamina II of rat spinal cord following dorsal rhizotomy: quantitative EM-immunocytochemical studies. Zhang B; Goldberger ME; Murray M Exp Neurol; 1993 Sep; 123(1):51-63. PubMed ID: 7691648 [TBL] [Abstract][Full Text] [Related]
38. [The ultrastructural characteristics of the motor neuron synaptic organization in the spinal cord of the frog Rana ridibunda]. Motorina MV Zh Evol Biokhim Fiziol; 1991; 27(1):49-57. PubMed ID: 1897320 [TBL] [Abstract][Full Text] [Related]
39. The morphological relationships between substance P immunoreactive processes and ventral horn neurons in the human and monkey spinal cord. de Lanerolle NC; LaMotte CC J Comp Neurol; 1982 Jun; 207(4):305-13. PubMed ID: 6181100 [TBL] [Abstract][Full Text] [Related]
40. Age-related changes in capsaicin-induced degeneration in rat brain. Ritter S; Dinh TT J Comp Neurol; 1992 Apr; 318(1):103-16. PubMed ID: 1583153 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]