These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

124 related articles for article (PubMed ID: 4135158)

  • 1. The intensification of cobalt-filled neurone profiles using a modification of Timm's sulphide-silver method.
    Tyrer NM; Bell EM
    Brain Res; 1974 Jun; 73(1):151-5. PubMed ID: 4135158
    [No Abstract]   [Full Text] [Related]  

  • 2. Quantitative electron microscopic analysis of postnatal development of zinc-positive nerve endings in the rat amygdala using Timm's sulphide silver technique.
    Mizukawa K; Tseng IM; Otsuka N
    Brain Res Dev Brain Res; 1989 Dec; 50(2):197-203. PubMed ID: 2482140
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cobalt sulphide staining of optic fibres in the brain of the cricket, Gryllus campestris.
    Honegger HW; Schürmann FW
    Cell Tissue Res; 1975 Jun; 159(2):213-25. PubMed ID: 50137
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Concentration and distribution of heavy metals in nasal mucosa of nickel-exposed workers and of controls, studied with atomic absorption spectrophotometric analysis and with Timm's sulphide silver method.
    Torjussen W; Haug FM; Andersen I
    Acta Otolaryngol; 1978; 86(5-6):449-63. PubMed ID: 82364
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effect of diethyldithiocarbamate (DEDTC) on sulphide silver stained boutons. Reversible blocking of Timm's sulphide silver stain for "heavy" metals in DEDTC treated rats (light microscopy).
    Danscher G; Haug FM; Fredens K
    Exp Brain Res; 1973 Mar; 16(5):521-32. PubMed ID: 4121158
    [No Abstract]   [Full Text] [Related]  

  • 6. Intensification of nickel- and cobalt-filled neurone profiles following differential staining by rubeanic acid.
    Quicke DL; Brace RC; Kirby P
    J Microsc; 1980 Jul; 119(2):267-72. PubMed ID: 6157815
    [No Abstract]   [Full Text] [Related]  

  • 7. An indirect method for quantitation of cellular zinc content of Timm-stained cerebellar samples by energy dispersive X-ray microanalysis.
    Farkas I; Szerdahelyi P; Kása P
    Histochemistry; 1988; 89(5):493-7. PubMed ID: 2459086
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Heavy metals in the brain. A light microscope study of the rat with Timm's sulphide silver method. Methodological considerations and cytological and regional staining patterns.
    Smejda Haug FM
    Adv Anat Embryol Cell Biol; 1973; 47(4):1-71. PubMed ID: 4139881
    [No Abstract]   [Full Text] [Related]  

  • 9. Electron microscopic demonstration of zinc in the hippocampal formation using Timm's sulfide silver technique.
    Ibata Y; Otsuka N
    J Histochem Cytochem; 1969 Mar; 17(3):171-5. PubMed ID: 4181596
    [No Abstract]   [Full Text] [Related]  

  • 10. A silver intensification method for cobalt-filled neurones in wholemount preparations.
    Bacon JP; Altman JS
    Brain Res; 1977 Dec; 138(2):359-63. PubMed ID: 22393
    [No Abstract]   [Full Text] [Related]  

  • 11. Hexamminecobaltic chloride provides a simple method for marking neurones for electron microscopy.
    Littlewood PM; Simmons PJ
    Brain Res; 1988 Mar; 445(1):165-70. PubMed ID: 3365553
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A preliminary report on cobalt sulphide staining of locust visual interneurons through extracellular ellectrodes.
    Kien J
    Brain Res; 1976 Jun; 109(1):158-64. PubMed ID: 58699
    [No Abstract]   [Full Text] [Related]  

  • 13. Motor and sensory flight neurones in a locust demonstrated using cobalt chloride.
    Tyrer NM; Altman JS
    J Comp Neurol; 1974 Sep; 157(2):117-38. PubMed ID: 4137852
    [No Abstract]   [Full Text] [Related]  

  • 14. Entorhinal and prepiriform cortices of the European hedgehog. A histochemical and densitometric study based on a comparison between Timm's sulphide silver method and the selenium method.
    Schwerdtfeger WK; Danscher G; Geiger H
    Brain Res; 1985 Nov; 348(1):69-76. PubMed ID: 2415220
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Anatomy of the ocellar interneurons of acridid grasshoppers. I. The large interneurons.
    Goodman CS
    Cell Tissue Res; 1976 Dec; 175(2):183-202. PubMed ID: 63335
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Anatomy of the ocellar interneurons of acridid grasshoppers. II. The small interneurons.
    Goodman CS; Williams JL
    Cell Tissue Res; 1976 Dec; 175(2):203-25. PubMed ID: 63336
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Sulfide silver stainability of a type of bouton in spinal cord motoneuron neuropil: an electron microscopic study with Timm's method for demonstration of heavy metals.
    Schrøder HD
    J Comp Neurol; 1979 Aug; 186(3):439-50. PubMed ID: 88463
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Intensification of cobaltous sulphide precipitate in frog nervous tissue.
    Székely G; Gallyas F
    Acta Biol Acad Sci Hung; 1975; 26(3-4):175-88. PubMed ID: 62478
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Distribution of heavy metals in the hippocampal region of the guinea pig. A light microscope study with Timm's sulfide silver method.
    Geneser-Jensen FA; Haug FM; Danscher G
    Z Zellforsch Mikrosk Anat; 1974 Mar; 147(4):441-78. PubMed ID: 4135374
    [No Abstract]   [Full Text] [Related]  

  • 20. Selenium in the Paneth cells.
    Danscher G; Thorlacius-Ussing O; Rungby J; Møller-Madsen B
    Sci Total Environ; 1985 Mar; 42(1-2):189-92. PubMed ID: 2409594
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.