These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

54 related articles for article (PubMed ID: 4135878)

  • 1. Quantitative studies of EEG development in the cerebral hemispheres of the chick embryo.
    Smith J; Corner M
    Arch Int Physiol Biochim; 1974; 82(2):347-9. PubMed ID: 4135878
    [No Abstract]   [Full Text] [Related]  

  • 2. The development of superficial infraslow potential oscillations of the brain in chick embryos.
    Sedlácek J
    Physiol Bohemoslov; 1975; 24(2):111-5. PubMed ID: 167389
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Development of electrical activity in cerebral hemispheres of the chick embryo.
    GARCIA-AUSTT E
    Proc Soc Exp Biol Med; 1954 Jun; 86(2):348-52. PubMed ID: 13177675
    [No Abstract]   [Full Text] [Related]  

  • 4. [Rhythms of brain activity in early ontogenesis of warm-blooded animals].
    Voĭno-Iasenetskiĭ AV
    Zh Evol Biokhim Fiziol; 1973; 8(3):333-42. PubMed ID: 4763558
    [No Abstract]   [Full Text] [Related]  

  • 5. Quantitative studies of variabilities and of nutrient partition between cerebral hemispheres, optic lobes, cerebella and bodies of individual chick embryos.
    Zamenhof S
    Growth; 1982; 46(3):183-8. PubMed ID: 7173708
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The dependence of superficial infraslow potential oscillations of brain hemispheres on osmotic and ionic changes in developing brain tissue of the chick embryo.
    Sedlácek J
    Physiol Bohemoslov; 1974; 23(6):497-50. PubMed ID: 4280082
    [No Abstract]   [Full Text] [Related]  

  • 7. The optic projection in brain hemispheres of chick embryo.
    Sedlácek J
    Physiol Bohemoslov; 1970; 19(3):197-204. PubMed ID: 4250448
    [No Abstract]   [Full Text] [Related]  

  • 8. Brain maturation estimation using neural classifier.
    Moreno L; Piñeiro JD; Sánchez JL; Mañas S; Merino J; Acosta L; Hamilton A
    IEEE Trans Biomed Eng; 1995 Apr; 42(4):428-32. PubMed ID: 7729844
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [Development of the bioelectric activity of the brain of the chick embryo].
    Blozovski M; Blozovski D
    J Physiol (Paris); 1965; 57(5):562-3. PubMed ID: 5847055
    [No Abstract]   [Full Text] [Related]  

  • 10. Qualitative and quantitative EEG changes of intramuscular thiothixene and trifluoperazine in chronic schizophrenia.
    Akpinar S; Itil TM; Holden JM; Hsu W
    Dis Nerv Syst; 1972 Jan; 33(1):40-5. PubMed ID: 5059688
    [No Abstract]   [Full Text] [Related]  

  • 11. [SIGNIFICANCE OF PROPRIOCEPTIVE IMPULSES IN THE FUNCTIONAL MATURATION OF THE CENTRAL NERVOUS SYSTEM OF THE CHICK EMBRYO].
    BOGDANOV OV
    Fiziol Zh SSSR Im I M Sechenova; 1963; 49():701-5. PubMed ID: 14071729
    [No Abstract]   [Full Text] [Related]  

  • 12. Development of pyridoxal kinase activity in the cerebral hemispheres of the chick embryo and young chick.
    Wainwright DS
    Can J Biochem; 1975 Feb; 53(2):248-9. PubMed ID: 1125812
    [No Abstract]   [Full Text] [Related]  

  • 13. [Electrical picture of the brain under increased respiration in children. Studies on the structure of hyperventilation and its value as a provocation method in clinical electroencephalography in a model of multivariate analysis using electronic data processing].
    Müller K
    Psychiatr Neurol Med Psychol Beih; 1971; 16():1-146. PubMed ID: 5006298
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Synchronization of movement-related cerebral potentials for averaging.
    Popivanov D; Gantchev GN; Ivanova T
    Acta Physiol Pharmacol Bulg; 1983; 9(2):70-3. PubMed ID: 6659983
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Differential expression in glial cells derived from chick embryo cerebral hemispheres at an advanced stage of development.
    Kentroti S; Vernadakis A
    J Neurosci Res; 1997 Feb; 47(3):322-31. PubMed ID: 9039654
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [Statistical structure of the interaction of EEG rhythms and individual properties of cerebral autoregulatory mechanisms].
    Soroko SI; Bekshaev SS
    Fiziol Zh SSSR Im I M Sechenova; 1981 Dec; 67(12):1765-73. PubMed ID: 7333372
    [No Abstract]   [Full Text] [Related]  

  • 17. [On a new system of automatic processing of the EEG in real time].
    Gasparetto B; Bozzano C; Cavazza B; Siccardi A
    Boll Soc Ital Biol Sper; 1973 Nov; 49(21):1226-9. PubMed ID: 4605820
    [No Abstract]   [Full Text] [Related]  

  • 18. Multiprocessor architecture for rapid EEG frequency analysis.
    Yakush SA; Willey TJ; Park TC; Maeda G
    IEEE Trans Biomed Eng; 1982 Jan; 29(1):55-6. PubMed ID: 7076270
    [No Abstract]   [Full Text] [Related]  

  • 19. [A comparison of the restructurings in the spatial-temporal organization of the cortical potentials from the human cerebral hemispheres with the EEG frequency characteristics during the solving of a cognitive task].
    Iakovenko IA; Cheremushkin EA
    Zh Vyssh Nerv Deiat Im I P Pavlova; 1996; 46(3):469-78. PubMed ID: 8755049
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Influence of hydrocortisone on DNA, RNA and protein in the chick embryo cerebral hemispheres.
    Stastný F; Svoboda J
    Acta Univ Carol Med (Praha); 1972; 18(5-6):229-42. PubMed ID: 4679681
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 3.