These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

76 related articles for article (PubMed ID: 4135993)

  • 1. Growth control and adenosine 3':5'-cyclic monophosphate levels in clonal cells of rat glioma.
    Nagai M; Potzuweit T; Wechsler W
    Neurol Med Chir (Tokyo); 1972; 12(0):46-51. PubMed ID: 4135993
    [No Abstract]   [Full Text] [Related]  

  • 2. Effects of methylmercuric chloride in the presence of cyclic AMP-stimulating agents on glioma and neuroblastoma cells in culture.
    Prasad KN; Nobles E; Spuhler K
    Environ Res; 1979 Aug; 19(2):321-38. PubMed ID: 227672
    [No Abstract]   [Full Text] [Related]  

  • 3. Regulation of adenosine 3' :5'-monophosphate efflux from rat glioma cells in culture*.
    Doore BJ; Bashor MM; Spitzer N; Mawe RC; Saier MH
    J Biol Chem; 1975 Jun; 250(11):4371-2. PubMed ID: 165200
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effect of catecholamines on the adenosine 3':5'-cyclic monophosphate concentrations of clonal satellite cells of neurons.
    Gilman AG; Nirenberg M
    Proc Natl Acad Sci U S A; 1971 Sep; 68(9):2165-8. PubMed ID: 4399927
    [TBL] [Abstract][Full Text] [Related]  

  • 5. C-6 glioma growth in rats: suppression with a beta-adrenergic agonist and a phosphodiesterase inhibitor.
    Chelmicka-Schorr E; Arnason BG; Holshouser SJ
    Ann Neurol; 1980 Oct; 8(4):447-9. PubMed ID: 6254438
    [TBL] [Abstract][Full Text] [Related]  

  • 6. [Cyclic AMP and malignant glioma. II. Effects of cyclic AMP on the growth of glial tumors].
    Kanno T; Nakazawa T; Kato Y
    Rinsho Shinkeigaku; 1973 Nov; 13(11):726-31. PubMed ID: 4360846
    [No Abstract]   [Full Text] [Related]  

  • 7. Multiple mechanisms of growth inhibition by cyclic AMP derivatives in rat GH1 pituitary cells: isolation of an adenylate cyclase-deficient variant.
    Martin TF; Ronning SA
    J Cell Physiol; 1981 Nov; 109(2):289-97. PubMed ID: 6271795
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [Cyclic AMP and neoplastic cell division].
    Kanta J
    Cesk Fysiol; 1979; 28(4):289-308. PubMed ID: 228875
    [No Abstract]   [Full Text] [Related]  

  • 9. Polyamines and cellular adenosine 3' :5'-cyclic monophosphate.
    Clô C; Caldarera CM; Tantini B; Benalal D; Bachrach U
    Biochem J; 1979 Sep; 182(3):641-9. PubMed ID: 229823
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Regulation of C6 glioma cell steroidogenesis by adenosine 3',5'-cyclic monophosphate.
    Papadopoulos V; Guarneri P
    Glia; 1994 Jan; 10(1):75-8. PubMed ID: 8300194
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Inhibition of hepatoma cell growth by analogs of adenosine and cyclic AMP and the influence of enzymes in mammalian sera.
    Hargrove JL; Granner DK
    J Cell Physiol; 1982 Jun; 111(3):232-8. PubMed ID: 6124549
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [Cyclic AMP and malignant glioma. 1. Effects of dibutyryl adenosine cyclic 3',5'-monophosphate on malignant glioma cells].
    Kanno T; Nakazawa T; Kato Y
    Rinsho Shinkeigaku; 1972 Nov; 12(11):584-95. PubMed ID: 4345680
    [No Abstract]   [Full Text] [Related]  

  • 13. The role of adenosine 3':5'-cyclic monophosphate in the division of WI 38 cells. The cellular response to prostaglandin E1 and the effects of an cyclic adenosine 3':5'-cyclic monophosphate analogue and prostaglandin E1 on cell division.
    Kuritz MJ; Polgar P; Taylor L; Rutenburg AM
    Biochem J; 1974 Aug; 142(2):339-44. PubMed ID: 4374195
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cyclic adenosine 3',5'-monophosphate inhibits insulin-like growth factor I gene expression in rat glioma cell lines: evidence for regulation of transcription and messenger ribonucleic acid stability.
    Wang L; Adamo ML
    Endocrinology; 2001 Jul; 142(7):3041-50. PubMed ID: 11416026
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Bioactivatable, membrane-permeant analogs of cyclic nucleotides as biological tools for growth control of C6 glioma cells.
    Bartsch M; Zorn-Kruppa M; Kühl N; Genieser HG; Schwede F; Jastorff B
    Biol Chem; 2003 Sep; 384(9):1321-6. PubMed ID: 14515995
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Binding of cyclic nucleotides with proteins in malignant and adenosine cyclic 3':5'-monophosphate-induced "differentiated" neuroblastoma cells in culture.
    Prasad KN; Sinha PK; Sahu SK; Brown JL
    Cancer Res; 1976 Jul; 36(7 PT 1):2290-6. PubMed ID: 179701
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effects of cyclic-nucleotide derivatives on the growth of human colonic carcinoma xenografts and on cell production in the rat colonic crypt epithelium.
    Tutton PJ; Barkla DH
    Br J Cancer; 1981 Aug; 44(2):182-8. PubMed ID: 6268136
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cyclic adenosine 3',5'-monophosphate in the control of melanoma cell replication and differentiation.
    Kreider JW; Rosenthal M; Lengle N
    J Natl Cancer Inst; 1973 Feb; 50(2):555-8. PubMed ID: 4349768
    [No Abstract]   [Full Text] [Related]  

  • 19. Induction of cytolysis of cultured lymphoma cells by adenosine 3':5'-cyclic monophosphate and the isolation of resistant variants.
    Daniel V; Litwack G; Tomkins GM
    Proc Natl Acad Sci U S A; 1973 Jan; 70(1):76-9. PubMed ID: 4346041
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Adenosine 3',5'-cyclic monophosphate levels in x-ray-induced small-bowel adenocarcinoma in the rat.
    Stevens RH; Smith DD; Osborne JW; Oberley LW
    J Natl Cancer Inst; 1976 Jul; 57(1):43-5. PubMed ID: 187764
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.