These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

171 related articles for article (PubMed ID: 413702)

  • 21. The role of some small peptides in the transfer of amino nitrogen across the wall of vascularly perfused intestine.
    Cheeseman CI; Parsons DS
    J Physiol; 1976 Nov; 262(2):459-76. PubMed ID: 1086903
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Dipeptide absorption in man.
    Hellier MD; Holdsworth CD; McColl I; Perrett D
    Gut; 1972 Dec; 13(12):965-9. PubMed ID: 4652039
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Mechanisms of inhibition of glycylglycine transport by glycyl-L-leucine and L-leucine in guinea-pig small intestine.
    Himukai M; Kano-Kameyama A; Hoshi T
    Biochim Biophys Acta; 1982 May; 687(2):170-8. PubMed ID: 7093247
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Metabolism of dipeptides and their constituent amino acids by liver, gut, kidney, and muscle.
    Lochs H; Williams PE; Morse EL; Abumrad NN; Adibi SA
    Am J Physiol; 1988 May; 254(5 Pt 1):E588-94. PubMed ID: 3364562
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Kinetics and characteristics of absorption from an equimolar mixture of 12 glycyl-dipeptides in human jejunum.
    Steinhardt HJ; Adibi SA
    Gastroenterology; 1986 Mar; 90(3):577-82. PubMed ID: 3943689
    [TBL] [Abstract][Full Text] [Related]  

  • 26. The effect of amino acids and dipeptides on sodium-ion transport in rat enterocytes.
    Cheeseman CI; Devlin D
    Biochim Biophys Acta; 1985 Feb; 812(3):767-73. PubMed ID: 3970905
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Intestinal absorption of beta-alanine, anserine and carnosine in rats.
    Hama T; Tamaki N; Miyamoto F; Kita M; Tsunemori F
    J Nutr Sci Vitaminol (Tokyo); 1976; 22(2):147-57. PubMed ID: 956928
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Relationships between mucosal hydrolysis and transport of two phenylalanine dipeptides.
    Silk DB; Nicholson JA; Kim YS
    Gut; 1976 Nov; 17(11):870-6. PubMed ID: 12068
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Intestinal uptake of dipeptides and beta-lactam antibiotics. I. The intestinal uptake system for dipeptides and beta-lactam antibiotics is not part of a brush border membrane peptidase.
    Kramer W; Dechent C; Girbig F; Gutjahr U; Neubauer H
    Biochim Biophys Acta; 1990 Nov; 1030(1):41-9. PubMed ID: 1979919
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Characterization of two dipeptidases purified from hepatic schistosome egg granulomas in mice. Leukotriene D4 hydrolases of granulomatous tissue.
    Sato N; Ito Y; Iida T; Fukuyama K; Epstein WL
    Biochem J; 1992 Jun; 284 ( Pt 3)(Pt 3):885-90. PubMed ID: 1622404
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Amino acid, dipeptide, and protein absorption in human beings.
    Nutr Rev; 1973 Sep; 31(9):272-4. PubMed ID: 4762213
    [No Abstract]   [Full Text] [Related]  

  • 32. The number of glycine residues which limits intact absorption of glycine oligopeptides in human jejunum.
    Adibi SA; Morse EL
    J Clin Invest; 1977 Nov; 60(5):1008-16. PubMed ID: 908747
    [TBL] [Abstract][Full Text] [Related]  

  • 33. H+ gradient-dependent transport of aminocephalosporins in rat intestinal brush-border membrane vesicles. Role of dipeptide transport system.
    Okano T; Inui K; Takano M; Hori R
    Biochem Pharmacol; 1986 Jun; 35(11):1781-6. PubMed ID: 3718527
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Role of rat intestinal brush-border membrane angiotensin-converting enzyme in dietary protein digestion.
    Yoshioka M; Erickson RH; Woodley JF; Gulli R; Guan D; Kim YS
    Am J Physiol; 1987 Dec; 253(6 Pt 1):G781-6. PubMed ID: 2827504
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Studies on the uptake of glycyl-L-leucine by strips of monkey small intestine.
    Das M; Radhakrishnan AN
    Indian J Biochem Biophys; 1974 Mar; 11(1):12-6. PubMed ID: 4435801
    [No Abstract]   [Full Text] [Related]  

  • 36. Intestinal hydrolysis of aspartylphenylalanine--the metabolic product of aspartame.
    Tobey NA; Heizer WD
    Gastroenterology; 1986 Oct; 91(4):931-7. PubMed ID: 3743970
    [TBL] [Abstract][Full Text] [Related]  

  • 37. PEPT1-mediated uptake of dipeptides enhances the intestinal absorption of amino acids via transport system b(0,+).
    Wenzel U; Meissner B; Döring F; Daniel H
    J Cell Physiol; 2001 Feb; 186(2):251-9. PubMed ID: 11169462
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Specificity and inhibition studies of human renal dipeptidase.
    Campbell BJ; Di Shih Y; Forrester LJ; Zahler WL
    Biochim Biophys Acta; 1988 Sep; 956(2):110-8. PubMed ID: 2844265
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Kinetic studies of dipeptide-based and amino acid-based peritoneal dialysis solutions.
    Weryński A; Waniewski J; Wang T; Anderstam B; Lindholm B; Bergström J
    Kidney Int; 2001 Jan; 59(1):363-71. PubMed ID: 11135092
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Characterization and nutritional significance of peptide transport in man.
    Silk DB; Hegarty JE; Fairclough PD; Clark ML
    Ann Nutr Metab; 1982; 26(6):337-52. PubMed ID: 6756278
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.