These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

184 related articles for article (PubMed ID: 4138973)

  • 1. Monoaminergic tracts of the diencephalon and innervation of the pars intermedia in Rana temporaria. A fluorescence and microspectrofluorimetric study.
    Rao PD; Hartwig HG
    Cell Tissue Res; 1974; 151(1):1-26. PubMed ID: 4138973
    [No Abstract]   [Full Text] [Related]  

  • 2. Formaldehyde-induced fluorescence in the telencephalon and diencephalon of the eel (Anguilla anguilla l.). A fluorescence-microscopic and microspectrofluorometric investigation with special reference to the innervation of the pituitary.
    Fremberg M; van Veen T; Hartwig HG
    Cell Tissue Res; 1977 Jan; 176(1):1-22. PubMed ID: 13933
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The ontogenesis of monoaminergic nerve fibres in the hypophysis of Rana temporaria with special reference to the pars distalis.
    Aronsson S
    Cell Tissue Res; 1976 Sep; 171(4):437-48. PubMed ID: 1086140
    [TBL] [Abstract][Full Text] [Related]  

  • 4. [Ontogeny of the amine-containing nerve cell systems in the brain of Rana temporaria].
    Bartels W
    Z Zellforsch Mikrosk Anat; 1971; 116(1):94-118. PubMed ID: 5103405
    [No Abstract]   [Full Text] [Related]  

  • 5. Histochemically demonstrable monoamines in the pituitary gland and median eminence of the female rat during the postnatal development.
    Partanen S; Rechardt L
    Z Zellforsch Mikrosk Anat; 1973 Dec; 147(1):41-57. PubMed ID: 4545104
    [No Abstract]   [Full Text] [Related]  

  • 6. [Biogenic amines in the brain of the frog (Rana esculenta)].
    Braak H
    Z Zellforsch Mikrosk Anat; 1970; 106(2):269-308. PubMed ID: 5454244
    [No Abstract]   [Full Text] [Related]  

  • 7. Femtogram detection limits for biogenic amines using microbore HPLC with electrochemical detection.
    Caliguri EJ; Mefford IN
    Brain Res; 1984 Mar; 296(1):156-9. PubMed ID: 6201234
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Monoamine-containing cell bodies in the squirrel monkey brain.
    Felten DL; Laties AM; Carpenter MB
    Am J Anat; 1974 Feb; 139(2):153-65. PubMed ID: 4204626
    [No Abstract]   [Full Text] [Related]  

  • 9. Fluorescence and electron microscopical study of aminergic nuclei in the brain of Bufo poweri.
    Chacko T; Terlou M; Peute J
    Cell Tissue Res; 1974 Jun; 149(4):481-95. PubMed ID: 4367855
    [No Abstract]   [Full Text] [Related]  

  • 10. Oxytocin-immunoreactive nerve fibers in the pars intermedia of the pituitary in the rabbit and hare.
    Schimchowitsch S; Stoeckel ME; Klein MJ; Garaud JC; Schmitt G; Porte A
    Cell Tissue Res; 1983; 228(2):255-63. PubMed ID: 6130846
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Double-staining techniques allows electrophysiological identification of monoamine-containing neurons.
    Audesirk TE; Audesirk GJ
    J Neurosci Methods; 1985 Aug; 14(3):207-10. PubMed ID: 2413320
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Histochemical fluorescence detection of changes in central monoamine neurones provoked by drugs acting on the CNS.
    Fuxe K; Hökfelt T
    Triangle; 1971; 10(3):73-84. PubMed ID: 5138525
    [No Abstract]   [Full Text] [Related]  

  • 13. Origin of 5-hydroxytryptophan and l-dopa accumulating in brain following decarboxylase inhibition.
    Bédard P; Carlsson A; Fuxe K; Lindqvist M
    Naunyn Schmiedebergs Arch Pharmakol; 1971; 269(1):1-6. PubMed ID: 4252440
    [No Abstract]   [Full Text] [Related]  

  • 14. Identification of adenohypophysiotropic neurohormone producing neurosecretory cells in rana temporaria. 3. The tubero-hypophysial monoaminergic fibres and the role of the tubero-hypophysial neurosecretory system.
    Dierickx K; Goossens N; Vandenberghe MP
    Z Zellforsch Mikrosk Anat; 1973; 143(1):93-106. PubMed ID: 4545067
    [No Abstract]   [Full Text] [Related]  

  • 15. Distribution of monoamines in the diencephalon and pituitary of the dogfish, Scyliorhinus canicula L.
    Wilson JF; Dodd JM
    Z Zellforsch Mikrosk Anat; 1973 Mar; 137(4):451-69. PubMed ID: 4735037
    [No Abstract]   [Full Text] [Related]  

  • 16. Determination of nanomole levels of 5-hydroxytryptophan, 5-hydroxytryptamine, and 5-hydroxyindoleacetic acid in the same sample.
    Fischer CA; Aprison MH
    Anal Biochem; 1972 Mar; 46(1):67-84. PubMed ID: 4536978
    [No Abstract]   [Full Text] [Related]  

  • 17. Microfluorometry of primary and secondary fluorescence in biological tissue.
    Rost FW; Pearse AG
    Histochem J; 1974 May; 6(3):245-50. PubMed ID: 4838360
    [No Abstract]   [Full Text] [Related]  

  • 18. Effects of three dihydroxylated derivatives of tryptamine on the behavior and on brain amine content in mice.
    Massotti M; Scotti de Carolis A; Longo VG
    Pharmacol Biochem Behav; 1974; 2(6):769-76. PubMed ID: 4549398
    [No Abstract]   [Full Text] [Related]  

  • 19. Distribution of biogenic amines and related enzymes in the rat pituitary gland.
    Saavedra JM; Palkovits M; Kizer JS; Brownstein M; Zivin JA
    J Neurochem; 1975 Sep; 25(3):257-60. PubMed ID: 240000
    [No Abstract]   [Full Text] [Related]  

  • 20. Biogenic amines in a retransplantable neurogenic teratocarcinoma.
    Jakupcević M; Lacković Z; Damjanov I; Bulat M
    Experientia; 1974 Jun; 30(6):652-3. PubMed ID: 4837091
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 10.