These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

124 related articles for article (PubMed ID: 4140117)

  • 1. Acid mucopolysaccharide metabolism, the cell surface, and primary mesenchyme cell activity in the sea urchin embryo.
    Karp GC; Solursh M
    Dev Biol; 1974 Nov; 41(1):110-23. PubMed ID: 4140117
    [No Abstract]   [Full Text] [Related]  

  • 2. Sulfated polysaccharides and cell differentiation in the sea urchin embryo.
    Løvtrup-Rein H; Løvtrup S
    Exp Cell Biol; 1984; 52(6):383-8. PubMed ID: 6238860
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Some observations on a protein-mucopolysaccharide complex found in sea urchin embryos.
    Kinoshita S
    Exp Cell Res; 1974 Mar; 85(1):31-40. PubMed ID: 4275068
    [No Abstract]   [Full Text] [Related]  

  • 4. Synthesis of sulfate donor in developing sea urchin embryos.
    Kinoshita S
    Exp Cell Res; 1974 Aug; 87(2):382-5. PubMed ID: 4278300
    [No Abstract]   [Full Text] [Related]  

  • 5. Dermatan sulfate formation in gastrulae of the sea urchin Clypeaster japonicus.
    Yamaguchi M; Kinoshita S; Suzuki N
    J Biochem; 1989 Jul; 106(1):158-62. PubMed ID: 2777747
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Changes within the chromatin during sea urchin embryogenesis. A study of ectodermic interphase nuclei with three-valent acetic iron (Hale) reagent.
    Immers J
    Exp Cell Res; 1972 May; 72(1):150-6. PubMed ID: 4112560
    [No Abstract]   [Full Text] [Related]  

  • 7. On the size relationship between nuclear and cytoplasmic RNA in sea urchin embryos.
    Kung CS
    Dev Biol; 1974 Feb; 36(2):343-56. PubMed ID: 4814572
    [No Abstract]   [Full Text] [Related]  

  • 8. Characterization of pulse-labeled nuclear RNA in sea urchin embryos.
    Aronson AI; Wilt FH; Wartiovaara J
    Exp Cell Res; 1972 May; 72(1):309-24. PubMed ID: 4623602
    [No Abstract]   [Full Text] [Related]  

  • 9. Inhibition of cell migration in sea urchin embryos by beta-D-xyloside.
    Solursh M; Mitchell SL; Katow H
    Dev Biol; 1986 Dec; 118(2):325-32. PubMed ID: 3098594
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cell surface changes occurring during sea urchin embryonic development monitored by quantitative agglutination with plant lectins.
    Krach SW; Green A; Nicolson GL; Oppenheimer SB
    Exp Cell Res; 1974 Mar; 84(1):191-8. PubMed ID: 4817720
    [No Abstract]   [Full Text] [Related]  

  • 11. Mesenchymal cell fusion in the sea urchin embryo.
    Hodor PG; Ettensohn CA
    Methods Mol Biol; 2008; 475():315-34. PubMed ID: 18979252
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Properties of the three cell types in sixteen-cell sea urchin embryos: RNA synthesis.
    Hynes RO; Greenhouse GA; Minkoff R; Gross PR
    Dev Biol; 1972 Apr; 27(4):457-78. PubMed ID: 5029494
    [No Abstract]   [Full Text] [Related]  

  • 13. Scanning electron microscopical study of the inside of sea urchin embryos (Pseudocentotus depressus). Effects of Aryl beta-xyloside, tunicamycin and deprivation of sulfate tions.
    Akasaka K; Amemiya S; Terayama H
    Exp Cell Res; 1980 Sep; 129(1):1-13. PubMed ID: 7428808
    [No Abstract]   [Full Text] [Related]  

  • 14. Nuclear RNA synthesis in sea urchin embryos.
    Hogan B; Gross PR
    Exp Cell Res; 1972 May; 72(1):101-14. PubMed ID: 4554434
    [No Abstract]   [Full Text] [Related]  

  • 15. Inhibition of gastrulation by the blastocoelic fluid from the sea urchin embryo.
    Berg WE; Akin EJ
    Dev Biol; 1971 Oct; 26(2):353-6. PubMed ID: 5168312
    [No Abstract]   [Full Text] [Related]  

  • 16. A new method for isolating primary mesenchyme cells of the sea urchin embryo. Panning on wheat germ agglutinin-coated dishes.
    Ettensohn CA; McClay DR
    Exp Cell Res; 1987 Feb; 168(2):431-8. PubMed ID: 3803448
    [TBL] [Abstract][Full Text] [Related]  

  • 17. HpEts implicated in primary mesenchyme cell differentiation of the sea urchin (Hemicentrotus pulcherrimus) embryo.
    Kurokawa D; Kitajima T; Mitsunaga-Nakatsubo K; Amemiya S; Shimada H; Akasaka K
    Zygote; 2000; 8 Suppl 1():S33-4. PubMed ID: 11191299
    [No Abstract]   [Full Text] [Related]  

  • 18. A comparison of protein synthetic patterns in normal and animalized sea urchin embryos.
    Carroll AG; Eckberg WR; Ozaki H
    Exp Cell Res; 1975 Feb; 90(2):328-32. PubMed ID: 1112276
    [No Abstract]   [Full Text] [Related]  

  • 19. Kinetics of uptake and incorporation of valine in the sea urchin embryo.
    Berg WE
    Exp Cell Res; 1968 Feb; 49(2):379-95. PubMed ID: 5760442
    [No Abstract]   [Full Text] [Related]  

  • 20. Mechanical and cellular aspects of gastrulation in the sea urchin Lytechinus variegatus.
    Morrill JB; Doty SD
    Prog Clin Biol Res; 1986; 217A():97-100. PubMed ID: 3749166
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 7.