BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

227 related articles for article (PubMed ID: 4141707)

  • 1. Anionic sites of human erythrocyte membranes. II. Antispectrin-induced transmembrane aggregation of the binding sites for positively charged colloidal particles.
    Nicolson GL; Painter RG
    J Cell Biol; 1973 Nov; 59(2 Pt 1):395-406. PubMed ID: 4141707
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Anionic sites of human erythrocyte membranes. I. Effects of trypsin, phospholipase C, and pH on the topography of bound positively charged colloidal particles.
    Nicolson GL
    J Cell Biol; 1973 May; 57(2):373-87. PubMed ID: 4121289
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Participation of spectrin in Sendai virus-induced fusion of human erythrocyte ghosts.
    Sekiguchi K; Asano A
    Proc Natl Acad Sci U S A; 1978 Apr; 75(4):1740-4. PubMed ID: 205869
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Intramembrane particle aggregation in erythrocyte ghosts. II. The influence of spectrin aggregation.
    Elgsaeter A; Shotton DM; Branton D
    Biochim Biophys Acta; 1976 Feb; 426(1):101-22. PubMed ID: 2324
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Spectrin rearrangement early in erythrocyte ghost endocytosis.
    Hardy B; Bensch KG; Schrier SL
    J Cell Biol; 1979 Sep; 82(3):654-63. PubMed ID: 117012
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Freeze-etch localization of concanavalin A receptors to the membrane intercalated particles of human erythrocyte ghost membranes.
    Silva PP; Nicolson GL
    Biochim Biophys Acta; 1974 Sep; 363(3):311-9. PubMed ID: 4462620
    [No Abstract]   [Full Text] [Related]  

  • 7. The localization of spectrin on the inner surface of human red blood cell membranes by ferritin-conjugated antibodies.
    Nicolson GL; Marchesi VT; Singer SJ
    J Cell Biol; 1971 Oct; 51(1):265-72. PubMed ID: 5000071
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Diminished spectrin extraction from ATP-depleted human erythrocytes. Evidence relating spectrin to changes in erythrocyte shape and deformability.
    Lux SE; John KM; Ukena TE
    J Clin Invest; 1978 Mar; 61(3):815-27. PubMed ID: 25286
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Involvement of spectrin in membrane fusion: induction of fusion in human erythrocyte ghosts by proteolytic enzymes and its inhibition by antispectrin antibody.
    Lalazar A; Loyter A
    Proc Natl Acad Sci U S A; 1979 Jan; 76(1):318-22. PubMed ID: 218196
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Membrane structure and surface coat of Entamoeba histolytica. Topochemistry and dynamics of the cell surface: cap formation and microexudate.
    Silva PP; Martínez-Palomo A; Gonzalez-Robles A
    J Cell Biol; 1975 Mar; 64(3):538-50. PubMed ID: 1150744
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Distribution of glycophorin on the surface of human erythrocyte membranes and its association with intramembrane particles: an immunochemical and freeze-fracture study of normal and En(a-) erythrocytes.
    Gahmberg CG; Taurén G; Virtanen I; Wartiovaara J
    J Supramol Struct; 1978; 8(3):337-47. PubMed ID: 723269
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Isolation of the major intrinsic transmembrane protein of the human erythrocyte membrane.
    Furthmayr H; Kahane I; Marchesi VT
    J Membr Biol; 1976 Mar; 26(2-3):173-87. PubMed ID: 1263250
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Hemolysis of human erythrocytes with saponin affects the membrane structure.
    Baumann E; Stoya G; Völkner A; Richter W; Lemke C; Linss W
    Acta Histochem; 2000 Feb; 102(1):21-35. PubMed ID: 10726162
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Transient holes in the erythrocyte membrane during hypotonic hemolysis and stable holes in the membrane after lysis by saponin and lysolecithin.
    Seeman P
    J Cell Biol; 1967 Jan; 32(1):55-70. PubMed ID: 10976201
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Intramembrane particle aggregation in erythrocyte ghosts. I. The effects of protein removal.
    Elgsaeter A; Branton D
    J Cell Biol; 1974 Dec; 63(3):1018-36. PubMed ID: 4215819
    [TBL] [Abstract][Full Text] [Related]  

  • 16. On the mechanism of ATP-induced shape changes in human erythrocyte membranes. I. The role of the spectrin complex.
    Sheetz MP; Singer SJ
    J Cell Biol; 1977 Jun; 73(3):638-46. PubMed ID: 873993
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Involvement of spectrin and ATP in infection of resealed erythrocyte ghosts by the human malarial parasite, Plasmodium falciparum.
    Olson JA; Kilejian A
    J Cell Biol; 1982 Dec; 95(3):757-62. PubMed ID: 6759513
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Spectrin promotes the association of F-actin with the cytoplasmic surface of the human erythrocyte membrane.
    Fowler VM; Luna EJ; Hargreaves WR; Taylor DL; Branton D
    J Cell Biol; 1981 Feb; 88(2):388-95. PubMed ID: 6894147
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The distribution pattern of anionic sites at the human erythrocyte surface as revealed by the colloidal iron method.
    Geyer G; Linss W; Schaaf P
    Acta Histochem; 1972; 42(1):138-42. PubMed ID: 4115319
    [No Abstract]   [Full Text] [Related]  

  • 20. Translational mobility of the membrane intercalated particles of human erythrocyte ghosts. pH-dependent, reversible aggregation.
    Pinto da Silva P
    J Cell Biol; 1972 Jun; 53(3):777-87. PubMed ID: 4554989
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.