These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

109 related articles for article (PubMed ID: 4143673)

  • 1. Effect of brain lesions on conditioned cortical electropotentials.
    Chow KL; Randall W; Morrell F
    Electroencephalogr Clin Neurophysiol; 1966 Apr; 20(4):357-69. PubMed ID: 4143673
    [No Abstract]   [Full Text] [Related]  

  • 2. Cortical and subcortical evoked potentials during conditioning.
    Sommer-Smith JA; Morocutti G
    Electroencephalogr Clin Neurophysiol; 1970 Oct; 29(4):383-91. PubMed ID: 4097208
    [No Abstract]   [Full Text] [Related]  

  • 3. Electrocortical recruiting responses during classical conditioning.
    Weinberger NM; Nakayama K; Lindsley DB
    Electroencephalogr Clin Neurophysiol; 1968 Jan; 24(1):16-24. PubMed ID: 4169744
    [No Abstract]   [Full Text] [Related]  

  • 4. Slow potential changes from cat cortex and classical aversive conditioning.
    Chiorini JR
    Electroencephalogr Clin Neurophysiol; 1969 Apr; 26(4):399-406. PubMed ID: 4183561
    [No Abstract]   [Full Text] [Related]  

  • 5. The role of the meso-diencephalic activating system in higher nervous activity: its role in habituation, learning mechanisms and conditioned reflex processes.
    Lissák K; Endröczi E
    Prog Brain Res; 1968; 22():297-311. PubMed ID: 5689929
    [No Abstract]   [Full Text] [Related]  

  • 6. [Functional significance of spatial synchronization of the electrical activity of the brain].
    Dumenko VN; Korol'kova TA
    Zh Vyssh Nerv Deiat Im I P Pavlova; 1982; 32(6):1037-45. PubMed ID: 6819733
    [No Abstract]   [Full Text] [Related]  

  • 7. Electroencephalographic correlates of learning in subcortical and cortical structures.
    Elazar Z; Adey WR
    Electroencephalogr Clin Neurophysiol; 1967 Oct; 23(4):306-19. PubMed ID: 4167764
    [No Abstract]   [Full Text] [Related]  

  • 8. [Cortical and subcortical components of conditioned reflexes].
    Burev J
    Zh Vyssh Nerv Deiat Im I P Pavlova; 1974; 24(3):479-86. PubMed ID: 4450756
    [No Abstract]   [Full Text] [Related]  

  • 9. Cortical control of thalamic spindle waves.
    Villablanca J; Schlag J
    Exp Neurol; 1968 Mar; 20(3):432-42. PubMed ID: 5656853
    [No Abstract]   [Full Text] [Related]  

  • 10. A cryogenic study of cortical conditioning changes.
    Rosenblum SM; O'Brien JH
    J Neurophysiol; 1977 Jul; 40(4):957-67. PubMed ID: 886376
    [No Abstract]   [Full Text] [Related]  

  • 11. Amino acids released from the cortical surface in cats following stimulation of the mesial thalamus and midbrain reticular formation.
    Jasper H; Koyama I
    Electroencephalogr Clin Neurophysiol; 1968 Mar; 24(3):292. PubMed ID: 4170259
    [No Abstract]   [Full Text] [Related]  

  • 12. Correlation between thalamic-induced cortical spike and wave activity and behaviour in unrestrained cats.
    Angyán L; Kajtár P; Sík E
    Acta Physiol Acad Sci Hung; 1967; 32(4):291-306. PubMed ID: 4876003
    [No Abstract]   [Full Text] [Related]  

  • 13. Excitability of EEG "synchronizing" and "desynchronizing" neurones in the thalamus and the brain-stem of the cat. II. Chronaxies and refractoriness.
    Abeles M
    Electroencephalogr Clin Neurophysiol; 1967 Jul; 23(1):25-34. PubMed ID: 4165557
    [No Abstract]   [Full Text] [Related]  

  • 14. Bilateral synchronous spike wave electrographic patterns in the cat. Interaction of bilateral cortical foci in the intact, the bilateral cortical-callosal, and adiencephalic preparation.
    Marcus EM; Watson CW
    Arch Neurol; 1966 Jun; 14(6):601-10. PubMed ID: 4286969
    [No Abstract]   [Full Text] [Related]  

  • 15. Hippocampal slow ("arousal") wave activation in the rostral midbrain transected cat.
    Kawamura H; Domino EF
    Electroencephalogr Clin Neurophysiol; 1968 Nov; 25(5):471-80. PubMed ID: 4182601
    [No Abstract]   [Full Text] [Related]  

  • 16. [Neurohumoral mechanisms regulating electrocortical synchronization states].
    Lozoya X; Velasco M; Estrada F; Velázquez X
    Arch Invest Med (Mex); 1972; 3(2):91-6. PubMed ID: 4403924
    [No Abstract]   [Full Text] [Related]  

  • 17. Effects of activating systems on neocortical after-discharges.
    Kreindler A; Crighel E; Steriade M
    Prog Brain Res; 1968; 22():286-96. PubMed ID: 5651171
    [No Abstract]   [Full Text] [Related]  

  • 18. [On the interaction of hypothalamus, reticular formation of the mesencephalon and thalamus in the mechanism of selective ascending activation of the cerebral cortex during physiologic hunger].
    Sudakov KV
    Fiziol Zh SSSR Im I M Sechenova; 1965 Apr; 51(4):449-56. PubMed ID: 5884833
    [No Abstract]   [Full Text] [Related]  

  • 19. [On the partcipation of the cerebral hemispheres and optic thalamus in the organization of food conditioned and unconditioned reflexes].
    Gavrilova LN
    Zh Vyssh Nerv Deiat Im I P Pavlova; 1966; 16(2):225-32. PubMed ID: 6005220
    [No Abstract]   [Full Text] [Related]  

  • 20. Modifications of the evoked responses during the conditioning process.
    Morocutti C; Sommer-Smith JA
    Electroencephalogr Clin Neurophysiol; 1969 Jul; 27(1):103. PubMed ID: 4182861
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 6.