BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

125 related articles for article (PubMed ID: 4144006)

  • 1. An NAD- and NADP-dependent malic enzyme with regulatory properties in rat liver and adrenal cortex mitochondrial fractions.
    Sauer LA
    Biochem Biophys Res Commun; 1973 Jan; 50(2):524-31. PubMed ID: 4144006
    [No Abstract]   [Full Text] [Related]  

  • 2. Mitochondrial NAD-dependent malic enzyme: a new regulatory enzyme.
    Sauer LA
    FEBS Lett; 1973 Jul; 33(2):251-5. PubMed ID: 4147096
    [No Abstract]   [Full Text] [Related]  

  • 3. The mitochondrial malic enzymes. I. Submitochondrial localization and purification and properties of the NAD(P)+-dependent enzyme from adrenal cortex.
    Mandella RD; Sauer LA
    J Biol Chem; 1975 Aug; 250(15):5877-84. PubMed ID: 238989
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The role of Ca 2+ in control of malic enzyme activity in bovine adrenal cortex mitochondria.
    Pfeiffer DR; Tchen TT
    Biochem Biophys Res Commun; 1973 Feb; 50(3):807-13. PubMed ID: 4144008
    [No Abstract]   [Full Text] [Related]  

  • 5. The activation of adrenal cortex mitochondrial malic enzyme by Ca2+ and Mg2+.
    Pfeiffer DR; Tchen TT
    Biochemistry; 1975 Jan; 14(1):89-96. PubMed ID: 1167337
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Studies on the properties of malic enzyme and malate dehydrogenase from Taenia crassiceps (Zeder, 1800) cysticerci.
    Zenka J; Kopácek P; Vokurková N
    Folia Parasitol (Praha); 1987; 34(4):323-8. PubMed ID: 3428763
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A stimulation by phosphate of malate transport and oxidation in rat adrenal mitochondria.
    Sauer LA; Park R
    Biochemistry; 1973 Feb; 12(4):643-9. PubMed ID: 4348017
    [No Abstract]   [Full Text] [Related]  

  • 8. Further studies on corticosteroidogenesis. VI. Pyruvate and malate supported steroid 11-beta-hydroxylation in rat adrenal gland mitochondria.
    Péron FG; Tsang CP
    Biochim Biophys Acta; 1969 Aug; 180(3):445-58. PubMed ID: 4390246
    [No Abstract]   [Full Text] [Related]  

  • 9. Regulation of coenzyme utilization by mitochondrial NAD(P)-dependent malic enzyme.
    Skorkowski EF; Storey KB
    Int J Biochem; 1990; 22(5):471-5. PubMed ID: 2347425
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Submitochondrial distribution of components of the steroid 11 beta-hydroxylase and cholesterol sidechain-cleaving enzyme systems in hog adrenal cortex.
    Yago N; Ichii S
    J Biochem; 1969 Feb; 65(2):215-24. PubMed ID: 4388938
    [No Abstract]   [Full Text] [Related]  

  • 11. Further studies on corticosteroidogenesis. IX. Energy-linked transhydrogenase in rat adrenal gland mitochondria.
    Péron FG; Tsang CP; Haksar A
    Biochim Biophys Acta; 1972 Jun; 270(2):266-71. PubMed ID: 4402815
    [No Abstract]   [Full Text] [Related]  

  • 12. Distribution of cholesterol side-chain cleavage and 11 -hydroxylase in the mitochondria of bovine adrenal cortex: release by phospholipase A.
    Billiar RB; Alousi MA; Knappenberger MH; Little B
    Arch Biochem Biophys; 1971 May; 144(1):30-50. PubMed ID: 4330128
    [No Abstract]   [Full Text] [Related]  

  • 13. Properties and regulation of leaf nicotinamide-adenine dinucleotide phosphate-malate dehydrogenase and 'malic' enzyme in plants with the C4-dicarboxylic acid pathway of photosynthesis.
    Johnson HS; Hatch MD
    Biochem J; 1970 Sep; 119(2):273-80. PubMed ID: 4395182
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mitochondrial malic enzymes. An association between NAD(P)+-dependent malic enzyme and cell renewal in Sprague-Dawley rat tissues.
    Nagel WO; Dauchy RT; Sauer LA
    J Biol Chem; 1980 May; 255(9):3849-54. PubMed ID: 7372653
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Inhibition of corticosterone formation and 3 -hydroxysteroid dehydrogenase activity in cell-free preparations of rat adrenals.
    Berger GM; Jones JD
    Endocrinology; 1971 Sep; 89(3):722-9. PubMed ID: 4398027
    [No Abstract]   [Full Text] [Related]  

  • 16. The role of malic enzyme in bovine adrenal cortex mitochondria.
    Simpson ER; Cammer W; Estabrook RW
    Biochem Biophys Res Commun; 1968 Apr; 31(1):113-8. PubMed ID: 4384910
    [No Abstract]   [Full Text] [Related]  

  • 17. The role of nicotinamide-adenine dinucleotide phosphate-dependent malate dehydrogenase and isocitrate dehydrogenase in the supply of reduced nicotinamide-adenine dinucleotide phosphate for steroidogenesis in the superovulated rat ovary.
    Flint AP; Denton RM
    Biochem J; 1970 Mar; 117(1):73-83. PubMed ID: 4393612
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Steroid hydroxylation and oxidative phosphorylation in human adrenal cortex mitochondria.
    Sauer LA
    Endocrinology; 1971 Feb; 88(2):318-24. PubMed ID: 4395505
    [No Abstract]   [Full Text] [Related]  

  • 19. In vitro adrenal mitochondrial 11 beta-hydroxylation following in vivo adrenal stimualtion or inhibition: enhanced substrate utilization.
    Laury LW; McCarthy JL
    Endocrinology; 1970 Dec; 87(6):1380-5. PubMed ID: 4394850
    [No Abstract]   [Full Text] [Related]  

  • 20. Changes in NAD(P)+-dependent malic enzyme and malate dehydrogenase activities during fibroblast proliferation.
    McKeehan WL; McKeehan KA
    J Cell Physiol; 1982 Feb; 110(2):142-8. PubMed ID: 7068771
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.