BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

142 related articles for article (PubMed ID: 4144169)

  • 1. Selective utilization of pyrimidine deoxyribonucleosides for deoxyribonucleic acid synthesis in pneumococcus.
    Bean B; Tomasz A
    J Bacteriol; 1973 Mar; 113(3):1356-62. PubMed ID: 4144169
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Inhibitory effects and metabolism of 5-fluoropyrimidine derivatives in pneumococcus.
    Bean B; Tomasz A
    J Bacteriol; 1971 May; 106(2):412-20. PubMed ID: 4396791
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Utilization of deoxyribonucleosides by virulent and avirulent Pneumococci.
    Firshein W; Hasselbacher P
    Biochim Biophys Acta; 1970 Mar; 204(1):60-81. PubMed ID: 4392385
    [No Abstract]   [Full Text] [Related]  

  • 4. Profiles of pyrimidine biosynthesis, salvage and degradation in disks of potato (Solanum tuberosum L.) tubers.
    Katahira R; Ashihara H
    Planta; 2002 Sep; 215(5):821-8. PubMed ID: 12244448
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Metabolism of pyrimidine deoxyribonucleosides in Neurospora crassa.
    Shaffer PM; Hsu CA; Abbott MT
    J Bacteriol; 1975 Feb; 121(2):648-55. PubMed ID: 122971
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Incorporation of deoxyribonucleosides into DNA of coryneform bacteria and the relevance of deoxyribonucleoside kinases.
    Auling G; Prelle H; Diekmann H
    Eur J Biochem; 1982 Jan; 121(2):365-70. PubMed ID: 6277626
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Deoxypyrimidine nucleoside metabolism in varicella-zoster virus-infected cells.
    Hackstadt T; Mallavia LP
    J Virol; 1978 Feb; 25(2):510-7. PubMed ID: 24124
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Studies of pyrimidine deoxynucleoside metabolism in newborn mouse skin.
    Lewis RA; Karasek M
    J Invest Dermatol; 1972 Oct; 59(4):317-22. PubMed ID: 4652621
    [No Abstract]   [Full Text] [Related]  

  • 9. The DNA-membrane fraction of Pneumococcus contains a DNA replication complex.
    Firshein W
    J Mol Biol; 1972 Oct; 70(3):383-97. PubMed ID: 4404296
    [No Abstract]   [Full Text] [Related]  

  • 10. Stereoselective differentiation between ribonucleosides and deoxynucleosides by reaction with the copper(II) acetate dimer.
    Berger NA; Tarien E; Eichhorn GL
    Nat New Biol; 1972 Oct; 239(95):237-40. PubMed ID: 4538853
    [No Abstract]   [Full Text] [Related]  

  • 11. Characterization of excess deoxyribonucleic acid synthesized by pneumococci in the presence of polyadenylic acid and deoxyribonucleic acid precursors.
    Firshein W; Schwenzfeier CW
    J Bacteriol; 1969 Mar; 97(3):1106-13. PubMed ID: 4388385
    [TBL] [Abstract][Full Text] [Related]  

  • 12. 5-Fluoropyrimidine-resistant mutants of pneumococcus.
    Bean B; Tomasz A
    J Bacteriol; 1973 Mar; 113(3):1348-55. PubMed ID: 4144168
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Transforming ability of bacterial deoxyribonucleic acid in relation to the marker efficiencies in Diplococcus pneumoniae during thymidine starvation.
    Brunel F; Sicard AM; Sicard N
    J Bacteriol; 1971 Jun; 106(3):904-7. PubMed ID: 4397639
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Metabolism of deoxycytidine in different organs of mice and rats.
    Gerber GB; Deroo J; Decock JP
    Arch Int Physiol Biochim; 1972 Apr; 80(2):353-65. PubMed ID: 4114883
    [No Abstract]   [Full Text] [Related]  

  • 15. Intracellular conversions of deoxyribonucleosides by Novikoff rat hepatoma cells and effects of hydroxyurea.
    Plagemann PG; Erbe J
    J Cell Physiol; 1974 Jun; 83(3):321-36. PubMed ID: 4363878
    [No Abstract]   [Full Text] [Related]  

  • 16. Preparation of 2'-deoxyribonucleosides with an identically 2H/13C-labeled sugar residue.
    Oogo Y; Nonaka K; Ono AM; Ono A; Kainosho M
    Nucleic Acids Symp Ser; 1999; (42):123-4. PubMed ID: 10780410
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Isotope-dilution analysis of rate-limiting steps and pools affecting the incorporation of thymidine and deoxycytidine into cultured thymus cells.
    Sjostrom DA; Forsdyke DR
    Biochem J; 1974 Feb; 138(2):253-62. PubMed ID: 4274611
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Specific increase in pyrimidine deoxynucleoside transport at the time of deoxyribonucleic acid synthesis in 3T3 mouse cells.
    Cunningham DD; Remo RA
    J Biol Chem; 1973 Sep; 248(18):6282-8. PubMed ID: 4542348
    [No Abstract]   [Full Text] [Related]  

  • 19. Incorporation characteristics of exogenous 15N-labeled thymidine, deoxyadenosine, deoxyguanosine and deoxycytidine into bacterial DNA.
    Tsuchiya K; Sano T; Tomioka N; Kohzu A; Komatsu K; Shinohara R; Shimode S; Toda T; Imai A
    PLoS One; 2020; 15(2):e0229740. PubMed ID: 32106263
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Incorporation of thymidine and amino acids into deoxyribonucleic acid and acid-insoluble cell structures in pneumococcal cultures synchronized for competence to transform.
    Ephrussi-Taylor H; Freed BA
    J Bacteriol; 1964 May; 87(5):1211-5. PubMed ID: 4381141
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.