These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

123 related articles for article (PubMed ID: 4144324)

  • 1. Active oxidative decarboxylation of malate by mitochondria isolated from L-1210 ascites tumor cells.
    Hansford RG; Lehninger AL
    Biochem Biophys Res Commun; 1973 Mar; 51(2):480-6. PubMed ID: 4144324
    [No Abstract]   [Full Text] [Related]  

  • 2. A stimulation by phosphate of malate transport and oxidation in rat adrenal mitochondria.
    Sauer LA; Park R
    Biochemistry; 1973 Feb; 12(4):643-9. PubMed ID: 4348017
    [No Abstract]   [Full Text] [Related]  

  • 3. Identification and properties of the nicotinamide adenine dinucleotide (phosphate)+-dependent malic enzyme in mouse ascites tumor mitochondria.
    Sauer LA; Dauchy RT
    Cancer Res; 1978 Jun; 38(6):1751-6. PubMed ID: 25711
    [No Abstract]   [Full Text] [Related]  

  • 4. Effect of bicarbonate and oxaloacetate on malate oxidation by spinach leaf mitochondria.
    Neuburger M; Douce R
    Biochim Biophys Acta; 1980 Feb; 589(2):176-89. PubMed ID: 7356982
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Evidence for the role of malic enzyme in the rapid oxidation of malate by cod heart mitochondria.
    Skorkowski EF; Aleksandrowicz Z; Scisłowski PW; Swierczyński J
    Comp Biochem Physiol B; 1984; 77(2):379-84. PubMed ID: 6697695
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mitochondrial respiration in ME-CAM, PEPCK-CAM, and C₃ succulents: comparative operation of the cytochrome, alternative, and rotenone-resistant pathways.
    Peckmann K; von Willert DJ; Martin CE; Herppich WB
    J Exp Bot; 2012 May; 63(8):2909-19. PubMed ID: 22330897
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The oxidation of malate by mitochondria isolated from cauliflower buds.
    Macrae AR; Moorhouse R
    Eur J Biochem; 1970 Sep; 16(1):96-102. PubMed ID: 4318476
    [No Abstract]   [Full Text] [Related]  

  • 8. Occurrence of the malate-aspartate shuttle in various tumor types.
    Greenhouse WV; Lehninger AL
    Cancer Res; 1976 Apr; 36(4):1392-6. PubMed ID: 177206
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Malate decarboxylation in isolated mitochondria from the Crassulacean acid metabolism plant Sedum praealtum.
    Spalding MH; Arron GP; Edwards GE
    Arch Biochem Biophys; 1980 Feb; 199(2):448-56. PubMed ID: 7189104
    [No Abstract]   [Full Text] [Related]  

  • 10. Respiratory properties and malate metabolism in Percoll-purified mitochondria isolated from pineapple, Ananas comosus (L.) Merr. cv. smooth cayenne.
    Hong HT; Nose A; Agarie S
    J Exp Bot; 2004 Oct; 55(406):2201-11. PubMed ID: 15361538
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mitochondrial NAD+-dependent malic enzyme from Anopheles stephensi: a possible novel target for malaria mosquito control.
    Pon J; Napoli E; Luckhart S; Giulivi C
    Malar J; 2011 Oct; 10():318. PubMed ID: 22029897
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [Some properties of the NADP-malate dehydrogenase isoenzymes of the rat renal cortex].
    Tsoncheva AV
    Biokhimiia; 1974; 39(6):1172-8. PubMed ID: 4156649
    [No Abstract]   [Full Text] [Related]  

  • 13. C4 acid decarboxylation and photosynthesis in bundle sheath cells of NAD-malic enzyme-type C4 plants: mechanism and the role of malate and orthophosphate.
    Furbank RT; Agostino A; Hatch MD
    Arch Biochem Biophys; 1990 Feb; 276(2):374-81. PubMed ID: 2306101
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Changes in NAD(P)+-dependent malic enzyme and malate dehydrogenase activities during fibroblast proliferation.
    McKeehan WL; McKeehan KA
    J Cell Physiol; 1982 Feb; 110(2):142-8. PubMed ID: 7068771
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The pathways of glutamate and glutamine oxidation by tumor cell mitochondria. Role of mitochondrial NAD(P)+-dependent malic enzyme.
    Moreadith RW; Lehninger AL
    J Biol Chem; 1984 May; 259(10):6215-21. PubMed ID: 6144677
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Energy metabolism of spermatozoa. VII. Interactions between lactate, pyruvate and malate as oxidative substrates for rabbit sperm mitochondria.
    Storey BT; Kayne FJ
    Biol Reprod; 1978 May; 18(4):527-36. PubMed ID: 207366
    [No Abstract]   [Full Text] [Related]  

  • 17. Mechanism of malate utilization in Ascaris-muscle mitochondria.
    Papa S; Cheah KS; Rasmussen HN; Lee IY; Chance B
    Eur J Biochem; 1970 Feb; 12(3):540-3. PubMed ID: 4392506
    [No Abstract]   [Full Text] [Related]  

  • 18. Photosynthesis in phosphoenolpyruvate carboxykinase-type C4 plants: activity and role of mitochondria in bundle sheath cells.
    Hatch MD; Agostino A; Burnell JN
    Arch Biochem Biophys; 1988 Mar; 261(2):357-67. PubMed ID: 3355156
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The oxidation of malate by isolated plant mitochondria.
    Coleman JO; Palmer JM
    Eur J Biochem; 1972 Apr; 26(4):499-509. PubMed ID: 4337262
    [No Abstract]   [Full Text] [Related]  

  • 20. [Malic acid metabolism of Saccharomyces. I. Anaerobic decomposition of malic acid by Saccharomyces cerevisiae].
    Fuck E; Radler F
    Arch Mikrobiol; 1972; 87(2):149-64. PubMed ID: 4404718
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 7.