These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

128 related articles for article (PubMed ID: 4144497)

  • 1. Comparative inhibition studies of the phosphotransferase and glycerophosphate acylation systems in membrane vesicles of Escherichia coli.
    Négrel R; Ailhaud G; Mutaftschiev S
    Biochim Biophys Acta; 1973 Feb; 291(3):635-49. PubMed ID: 4144497
    [No Abstract]   [Full Text] [Related]  

  • 2. Reconstitution of D-lactate-dependent transport in membrane vesicles from a D-lactate dehydrogenase mutant of Escherichia coli.
    Reeves JP; Hong JS; Kaback HR
    Proc Natl Acad Sci U S A; 1973 Jul; 70(7):1917-21. PubMed ID: 4579004
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mechanisms of active transport in isolated bacterial membrane vesicles. VII. Fluorescence of 1-anilino-8-naphthalenesulfonate during D-lactate oxidation by membrane vesicles from Escherichia coli.
    Reeves JP; Lombardi FJ; Kaback HR
    J Biol Chem; 1972 Oct; 247(19):6204-11. PubMed ID: 4568608
    [No Abstract]   [Full Text] [Related]  

  • 4. The effect of sulfhydryl inhibitors on substrate oxidation and proline transport with membrane preparations from Mycobacterium phlei.
    Kosmakos FC; Brodie AF
    J Biol Chem; 1974 Nov; 249(21):6956-64. PubMed ID: 4370899
    [No Abstract]   [Full Text] [Related]  

  • 5. Succinate- and NADH oxidase systems of Escherichia coli membrane vesicles. Mechanism of selective inhibition of the systems by zinc ions.
    Kasahara M; Anraku Y
    J Biochem; 1974 Nov; 76(5):967-76. PubMed ID: 4156035
    [No Abstract]   [Full Text] [Related]  

  • 6. Choline acetyltransferase. Inhibition by thiol reagents.
    Roskoski R
    J Biol Chem; 1974 Apr; 249(7):2156-9. PubMed ID: 4856436
    [No Abstract]   [Full Text] [Related]  

  • 7. Different sidedness of functionally homologous essential thiols in two membrane-bound phosphotransferase enzymes of Escherichia coli detected by permeant and nonpermeant thiol reagents.
    Haguenauer-Tsapis R; Kepes A
    J Biol Chem; 1980 Jun; 255(11):5075-81. PubMed ID: 6246097
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Identification of the amine-polyamine-choline transporter superfamily 'consensus amphipathic region' as the target for inactivation of the Escherichia coli GABA transporter GabP by thiol modification reagents. Role of Cys-300 in restoring thiol sensitivity to Gabp lacking Cys.
    Hu LA; King SC
    Biochem J; 1999 May; 339 ( Pt 3)(Pt 3):649-55. PubMed ID: 10215604
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Solubilization and partial purification of amino acid-specific components of the D-lactate dehydrogenase-coupled amino acid-transport systems (E. coli-cell membranes-sephadex-detergent-solubilized-vesicles).
    Gordon AS; Lombardi FJ; Kaback HR
    Proc Natl Acad Sci U S A; 1972 Feb; 69(2):358-62. PubMed ID: 4333978
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effect of PCMBS on water transfer across biological membranes.
    Naccache P; Sha'afi RI
    J Cell Physiol; 1974 Jun; 83(3):449-56. PubMed ID: 4827580
    [No Abstract]   [Full Text] [Related]  

  • 11. Sulfhydryl group reactivity in the Escherichia coli CoA transferase.
    Sramek SJ; Frerman FE; Adams MB
    Arch Biochem Biophys; 1977 Jun; 181(2):516-24. PubMed ID: 332080
    [No Abstract]   [Full Text] [Related]  

  • 12. Reconstitution of transport dependent on D-lactate or glycerol 3-phosphate in membrane vesicles of Escherichia coli deficient in the corresponding dehydrogenases.
    Futai M
    Biochemistry; 1974 May; 13(11):2327-33. PubMed ID: 4598623
    [No Abstract]   [Full Text] [Related]  

  • 13. Mechanism and kinetics of chromate transport in human platelets.
    Tsukada T; Steiner M; Baldini M
    Am J Physiol; 1971 Dec; 221(6):1697-705. PubMed ID: 5124313
    [No Abstract]   [Full Text] [Related]  

  • 14. Unmasking of an essential thiol during function of the membrane bound enzyme II of the phosphoenolpyruvate glucose phosphotransferase system of Escherichia coli.
    Haguenauer-Tsapis R; Kepes A
    Biochim Biophys Acta; 1977 Feb; 465(1):118-30. PubMed ID: 319829
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Counterflow of galactosides in Escherichia coli.
    Wong PT; Wilson TH
    Biochim Biophys Acta; 1970; 196(2):336-50. PubMed ID: 4905619
    [No Abstract]   [Full Text] [Related]  

  • 16. Effect of SH-, NH2- and COOH-site group reagents on the transport processes in the proximal convolution of the rat kidney.
    Ullrich KJ; Fasold H; Klöss S; Rumrich G; Salzer M; Sato K; Simon B; de Vries JX
    Pflugers Arch; 1973 Nov; 344(1):51-68. PubMed ID: 4797975
    [No Abstract]   [Full Text] [Related]  

  • 17. Effect of sulfhydryl reagents on the activity of histidinolphosphatase from Salmonella typhimurium and bakers' yeast.
    Houston LL; Millay RH
    Biochim Biophys Acta; 1974 Nov; 370(1):216-26. PubMed ID: 4371845
    [No Abstract]   [Full Text] [Related]  

  • 18. Transport across isolated bacterial cytoplasmic membranes.
    Kaback HR
    Biochim Biophys Acta; 1972 Aug; 265(3):367-416. PubMed ID: 4581579
    [No Abstract]   [Full Text] [Related]  

  • 19. Effect of thiol reacting reagents on the structure of the Escherichia coli ribosome.
    Suryanarayana P
    Indian J Biochem Biophys; 1978 Oct; 15(5):384-7. PubMed ID: 376434
    [No Abstract]   [Full Text] [Related]  

  • 20. Involvement of amino and sulphydryl groups in olfactory transduction in silk moths.
    Villet RH
    Nature; 1974 Apr; 248(5450):707-9. PubMed ID: 4833276
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 7.