These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

46 related articles for article (PubMed ID: 4144860)

  • 1. Surface geometry of some microcrystalline celluloses.
    Marshall K; Sixsmith D; Stanley-Wood NG
    J Pharm Pharmacol; 1972 Dec; 24():Suppl:138P. PubMed ID: 4144860
    [No Abstract]   [Full Text] [Related]  

  • 2. Influence of the supramolecular structure and physicochemical properties of cellulose on its dissolution in a lithium chloride/N,N-dimethylacetamide solvent system.
    Ramos LA; Assaf JM; El Seoud OA; Frollini E
    Biomacromolecules; 2005; 6(5):2638-47. PubMed ID: 16153102
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mesopore structure of microcrystalline cellulose tablets characterized by nitrogen adsorption and SEM: the influence on water-induced ionic conduction.
    Nilsson M; Mihranyan A; Valizadeh S; Strømme M
    J Phys Chem B; 2006 Aug; 110(32):15776-81. PubMed ID: 16898725
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Quasi-one-dimensional arrangement of silver nanoparticles templated by cellulose microfibrils.
    Wu M; Kuga S; Huang Y
    Langmuir; 2008 Sep; 24(18):10494-7. PubMed ID: 18680325
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Transparent and high gas barrier films of cellulose nanofibers prepared by TEMPO-mediated oxidation.
    Fukuzumi H; Saito T; Iwata T; Kumamoto Y; Isogai A
    Biomacromolecules; 2009 Jan; 10(1):162-5. PubMed ID: 19055320
    [TBL] [Abstract][Full Text] [Related]  

  • 6. [Influence of particle size on tablet properties in manufacturing microcrystalline cellulose].
    Hüttenrauch R; Jacob J; Zöbisch B
    Pharmazie; 1972 Jun; 27(6):416-7. PubMed ID: 5082272
    [No Abstract]   [Full Text] [Related]  

  • 7. Crystallographically proven nanometer-sized gold thiolate cluster Au102(SR)44: its unexpected molecular anatomy and resulting stereochemical and bonding consequences.
    Mednikov EG; Dahl LF
    Small; 2008 May; 4(5):534-7. PubMed ID: 18491360
    [No Abstract]   [Full Text] [Related]  

  • 8. A crystalline mesoporous coordination copolymer with high microporosity.
    Koh K; Wong-Foy AG; Matzger AJ
    Angew Chem Int Ed Engl; 2008; 47(4):677-80. PubMed ID: 18058972
    [No Abstract]   [Full Text] [Related]  

  • 9. Crystallographic order in multi-walled carbon nanotubes synthesized in the presence of nitrogen.
    Ducati C; Koziol K; Friedrichs S; Yates TJ; Shaffer MS; Midgley PA; Windle AH
    Small; 2006 Jun; 2(6):774-84. PubMed ID: 17193122
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mechanism of action of tablet disintegrants.
    Lowenthal W
    Pharm Acta Helv; 1973; 48(11):589-609. PubMed ID: 4593513
    [No Abstract]   [Full Text] [Related]  

  • 11. Electrophoretic mobility of a spherical colloidal particle in a salt-free medium.
    Ohshima H
    J Colloid Interface Sci; 2002 Apr; 248(2):499-503. PubMed ID: 16290556
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Hydration of microcrystalline cellulose and milled cellulose studied by sorption calorimetry.
    Kocherbitov V; Ulvenlund S; Kober M; Jarring K; Arnebrant T
    J Phys Chem B; 2008 Mar; 112(12):3728-34. PubMed ID: 18307340
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The crystallization kinetics and morphology of nitric acid trihydrate.
    Grothe H; Tizek H; Waller D; Stokes DJ
    Phys Chem Chem Phys; 2006 May; 8(19):2232-9. PubMed ID: 16688305
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Simulation of the pressure-driven wurtzite to rock salt phase transition in nanocrystals.
    Morgan BJ; Madden PA
    Phys Chem Chem Phys; 2006 Jul; 8(28):3304-13. PubMed ID: 16835678
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A priori crystal structure prediction of native celluloses.
    Viëtor RJ; Mazeau K; Lakin M; Pérez S
    Biopolymers; 2000 Oct; 54(5):342-54. PubMed ID: 10935974
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Micromeritics and release behaviours of cellulose acetate butyrate microspheres containing theophylline prepared by emulsion solvent evaporation and emulsion non-solvent addition method.
    Jelvehgari M; Atapour F; Nokhodchi A
    Arch Pharm Res; 2009 Jul; 32(7):1019-28. PubMed ID: 19641883
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Enzymatic hydrolysis and physical characterization of commercial celluloses and cellulose-based ion-exchange powdered mixed resins.
    Clarkin SD; Clesceri LS
    Appl Microbiol Biotechnol; 2002 Dec; 60(4):485-8. PubMed ID: 12466892
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Synthesis of cationic polymer-grafted cellulose by aqueous ATRP.
    Glaied O; Dubé M; Chabot B; Daneault C
    J Colloid Interface Sci; 2009 May; 333(1):145-51. PubMed ID: 19237164
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Novel ultra-rapid freezing particle engineering process for enhancement of dissolution rates of poorly water-soluble drugs.
    Overhoff KA; Engstrom JD; Chen B; Scherzer BD; Milner TE; Johnston KP; Williams RO
    Eur J Pharm Biopharm; 2007 Jan; 65(1):57-67. PubMed ID: 16987642
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Micropatterned thin film honeycomb materials from regiospecifically modified cellulose.
    Kadla JF; Asfour FH; Bar-Nir B
    Biomacromolecules; 2007 Jan; 8(1):161-5. PubMed ID: 17206802
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 3.