These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

130 related articles for article (PubMed ID: 4146025)

  • 1. Oxidation and reduction of D-xylose by cell-free extract of Pichia quercuum.
    Suzuki T; Onishi H
    Appl Microbiol; 1973 May; 25(5):850-2. PubMed ID: 4146025
    [TBL] [Abstract][Full Text] [Related]  

  • 2. [Activity of the key enzymes in xylose-assimilating yeasts at different rates of oxygen transfer to the fermentation medium].
    Iablochkova EN; Bolotnikova OI; Mikhaĭlova NP; Nemova NN; Ginak AI
    Mikrobiologiia; 2004; 73(2):163-8. PubMed ID: 15198025
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Carbon fluxes of xylose-consuming Saccharomyces cerevisiae strains are affected differently by NADH and NADPH usage in HMF reduction.
    Almeida JR; Bertilsson M; Hahn-Hägerdal B; Lidén G; Gorwa-Grauslund MF
    Appl Microbiol Biotechnol; 2009 Sep; 84(4):751-61. PubMed ID: 19506862
    [TBL] [Abstract][Full Text] [Related]  

  • 4. [The activity of xylose reductase and xylitol dehydrogenase in yeasts].
    Iablochkova EN; Bolotnikova OI; Mikhaĭlova NP; Nemova NN; Ginak AI
    Mikrobiologiia; 2003; 72(4):466-9. PubMed ID: 14526534
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Engineering redox cofactor regeneration for improved pentose fermentation in Saccharomyces cerevisiae.
    Verho R; Londesborough J; Penttilä M; Richard P
    Appl Environ Microbiol; 2003 Oct; 69(10):5892-7. PubMed ID: 14532041
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Engineering of a matched pair of xylose reductase and xylitol dehydrogenase for xylose fermentation by Saccharomyces cerevisiae.
    Krahulec S; Klimacek M; Nidetzky B
    Biotechnol J; 2009 May; 4(5):684-94. PubMed ID: 19452479
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Boost in bioethanol production using recombinant Saccharomyces cerevisiae with mutated strictly NADPH-dependent xylose reductase and NADP(+)-dependent xylitol dehydrogenase.
    Khattab SM; Saimura M; Kodaki T
    J Biotechnol; 2013 Jun; 165(3-4):153-6. PubMed ID: 23578809
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effects of NADH-preferring xylose reductase expression on ethanol production from xylose in xylose-metabolizing recombinant Saccharomyces cerevisiae.
    Lee SH; Kodaki T; Park YC; Seo JH
    J Biotechnol; 2012 Apr; 158(4):184-91. PubMed ID: 21699927
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The yeast Scheffersomyces amazonensis is an efficient xylitol producer.
    Cadete RM; Melo-Cheab MA; Viana AL; Oliveira ES; Fonseca C; Rosa CA
    World J Microbiol Biotechnol; 2016 Dec; 32(12):207. PubMed ID: 27807756
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [Specific features of fermentation of D-xylose and D-glucose by xylose-assimilating yeasts].
    Iablochkova EN; Bolotnikova OI; Mikhaĭlova NP; Nemova NN; Ginak AI
    Prikl Biokhim Mikrobiol; 2003; 39(3):302-6. PubMed ID: 12754827
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Fermentation of D-xylose, xylitol, and D-xylulose by yeasts.
    Maleszka R; Schneider H
    Can J Microbiol; 1982 Mar; 28(3):360-3. PubMed ID: 6211222
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The NADP(H) redox couple in yeast metabolism.
    Bruinenberg PM
    Antonie Van Leeuwenhoek; 1986; 52(5):411-29. PubMed ID: 3789705
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Transient-state and steady-state kinetic studies of the mechanism of NADH-dependent aldehyde reduction catalyzed by xylose reductase from the yeast Candida tenuis.
    Nidetzky B; Klimacek M; Mayr P
    Biochemistry; 2001 Aug; 40(34):10371-81. PubMed ID: 11513616
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Engineering a synthetic anaerobic respiration for reduction of xylose to xylitol using NADH output of glucose catabolism by Escherichia coli AI21.
    Iverson A; Garza E; Manow R; Wang J; Gao Y; Grayburn S; Zhou S
    BMC Syst Biol; 2016 Apr; 10():31. PubMed ID: 27083875
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Saccharomyces cerevisiae engineered to produce D-xylonate.
    Toivari MH; Ruohonen L; Richard P; Penttilä M; Wiebe MG
    Appl Microbiol Biotechnol; 2010 Oct; 88(3):751-60. PubMed ID: 20680264
    [TBL] [Abstract][Full Text] [Related]  

  • 16. ENZYMATIC BASIS FOR D-ARBITOL PRODUCTION BY SACCHAROMYCES ROUXII.
    INGRAM JM; WOOD WA
    J Bacteriol; 1965 May; 89(5):1186-94. PubMed ID: 14292984
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Analysis of metabolisms and transports of xylitol using xylose- and xylitol-assimilating Saccharomyces cerevisiae.
    Tani T; Taguchi H; Akamatsu T
    J Biosci Bioeng; 2017 May; 123(5):613-620. PubMed ID: 28126230
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A new strategy to improve the efficiency and sustainability of Candida parapsilosis catalyzing deracemization of (R,S)-1-phenyl-1,2-ethanediol under non-growing conditions: increase of NADPH availability.
    Nie Y; Xu Y; Hu QS; Xiao R
    J Microbiol Biotechnol; 2009 Jan; 19(1):65-71. PubMed ID: 19190410
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cloning and functional characterization of xylitol dehydrogenase genes from Issatchenkia orientalis and Torulaspora delbrueckii.
    Han X; Hu X; Zhou C; Wang H; Li Q; Ouyang Y; Kuang X; Xiao D; Xiang Q; Yu X; Li X; Gu Y; Zhao K; Chen Q; Ma M
    J Biosci Bioeng; 2020 Jul; 130(1):29-35. PubMed ID: 32171656
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Rapid ethanol production at elevated temperatures by engineered thermotolerant Kluyveromyces marxianus via the NADP(H)-preferring xylose reductase-xylitol dehydrogenase pathway.
    Zhang J; Zhang B; Wang D; Gao X; Sun L; Hong J
    Metab Eng; 2015 Sep; 31():140-52. PubMed ID: 26253204
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.