These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

148 related articles for article (PubMed ID: 4146148)

  • 1. The role of NADPH-cytochrome b 5 reductase in microsomal lipid peroxidation.
    Bidlack WR; Okita RT; Hochstein P
    Biochem Biophys Res Commun; 1973 Jul; 53(2):459-65. PubMed ID: 4146148
    [No Abstract]   [Full Text] [Related]  

  • 2. The distinct enzymic lipid peroxidation systems from liver microsomes in the presence or ADP--or EDTA--iron complexes.
    Lyakhovich VV; Pospelova LN; Mishin VM; Pokrovsky AG
    FEBS Lett; 1976 Dec; 71(2):303-5. PubMed ID: 187447
    [No Abstract]   [Full Text] [Related]  

  • 3. Microsomal electron transport. I. Reduced nicotinamide adenine dinucleotide phosphate-cytochrome c reductase and cytochrome P-450 as electron carriers in microsomal NADPH-peroxidase activity.
    Hrycay EG; O'Brien PJ
    Arch Biochem Biophys; 1973 Jul; 157(1):7-22. PubMed ID: 4146146
    [No Abstract]   [Full Text] [Related]  

  • 4. Microsomal electron transport. II. Reduced nicotinamide adenine dinucleotide--cytochrome b5 reductase and cytochrome P-450 as electron carriers in microsomal NADH-peroxidase activity.
    Hrycay EG; O'Brien PJ
    Arch Biochem Biophys; 1974 Jan; 160(1):230-45. PubMed ID: 4151324
    [No Abstract]   [Full Text] [Related]  

  • 5. The effect of o-diphenols upon the microsomal NADPH and NADH oxidase activities.
    Augusto O; Bechara EJ; Sanioto DL; Cilento G
    Arch Biochem Biophys; 1973 Sep; 158(1):359-64. PubMed ID: 4147081
    [No Abstract]   [Full Text] [Related]  

  • 6. NADPH-dependen lipid peroxidation catalyzed by purified NADPH-cytochrome C reductase from rat liver microsomes.
    Pederson TC; Aust SD
    Biochem Biophys Res Commun; 1972 Aug; 48(4):789-95. PubMed ID: 4404623
    [No Abstract]   [Full Text] [Related]  

  • 7. Microsomal electron transport: tetrazolium reduction by rat liver microsomal NADPH-cytochrome c reductase.
    Roerig DL; Mascaro L; Aust SD
    Arch Biochem Biophys; 1972 Dec; 153(2):475-9. PubMed ID: 4350805
    [No Abstract]   [Full Text] [Related]  

  • 8. Age-dependent changes in rat liver microsomal and mitochondrial NADPH-dependent lipid peroxidation.
    Player TJ; Mills DJ; Horton AA
    Biochem Biophys Res Commun; 1977 Oct; 78(4):1397-402. PubMed ID: 21662
    [No Abstract]   [Full Text] [Related]  

  • 9. NADPH-cytochrome c reductase, cytochrome P-450 and NADPH-linked lipid peroxidation in microsomal fractions obtained from rat tissue.
    Benedetto C; Slater TF; Dianzani MU
    Biochem Soc Trans; 1976; 4(6):1094-7. PubMed ID: 828591
    [No Abstract]   [Full Text] [Related]  

  • 10. Role of phospholipid in the reconstituted liver microsomal mixed function oxidase system containing cytochrome P-450 and NADPH-cytochrome P-450 reductase.
    Autor AP; Kaschnitz RM; Heidema JK; Van der Hoeven TA; Duppel W; Coon MJ
    Drug Metab Dispos; 1973; 1(1):156-61. PubMed ID: 4149377
    [No Abstract]   [Full Text] [Related]  

  • 11. Studies on three microsomal electron transfer enzyme systems. Specificity of electron flow pathways.
    Jansson I; Schenkman JB
    Arch Biochem Biophys; 1977 Jan; 178(1):89-107. PubMed ID: 13723
    [No Abstract]   [Full Text] [Related]  

  • 12. The effect of extra bound cytochrome b-5 on cytochrome P-450-dependent enzyme activities in liver microsomes.
    Hrycay EG; Estabrook RW
    Biochem Biophys Res Commun; 1974 Sep; 60(2):771-8. PubMed ID: 4153715
    [No Abstract]   [Full Text] [Related]  

  • 13. Evidence against participation of cytochrome b5 in the hepatic microsomal mixed-function oxidase reaction.
    Jansson I; Schenkman JB
    Mol Pharmacol; 1973 Nov; 9(6):840-5. PubMed ID: 4148656
    [No Abstract]   [Full Text] [Related]  

  • 14. A kinetic assay of TPNH-dependent microsomal lipid peroxidation by changes in difference spectra.
    May HE; Reed DJ
    Anal Biochem; 1973 Oct; 55(2):331-7. PubMed ID: 4148003
    [No Abstract]   [Full Text] [Related]  

  • 15. A possible mechanism of the generation of singlet molecular oxygen in nadph-dependent microsomal lipid peroxidation.
    Sugioka K; Nakano M
    Biochim Biophys Acta; 1976 Feb; 423(2):203-16. PubMed ID: 2317
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The many roles of cytochrome b-5 in hepatic microsomes.
    Schenkman JB; Jansson I; Robie-Suh KM
    Life Sci; 1976 Sep; 19(5):611-23. PubMed ID: 8685
    [No Abstract]   [Full Text] [Related]  

  • 17. Abnormal microsomal cytochromes and electron transport in Morris hepatomas.
    Miyake Y; Gaylor JL; Morris HP
    J Biol Chem; 1974 Mar; 249(6):1980-7. PubMed ID: 4150421
    [No Abstract]   [Full Text] [Related]  

  • 18. The role of the stimulation of nadph-cytochrome P-450 reductase activity in hepatic, microsomal mixed function oxidase activity.
    Holtzman JL
    Pharmacol Ther B; 1979; 4(3):601-27. PubMed ID: 224402
    [No Abstract]   [Full Text] [Related]  

  • 19. Microsomal electron transport. The role of reduced nicotinamide adenine dinucleotide phosphate-cytochrome c reductase in liver microsomal lipid peroxidation.
    Pederson TC; Buege JA; Aust SD
    J Biol Chem; 1973 Oct; 248(20):7134-41. PubMed ID: 4200585
    [No Abstract]   [Full Text] [Related]  

  • 20. Regulative mechanisms in NADH- and NADPH-supported N-oxidation of 4-chloroaniline catalyzed by cytochrome b5-enriched rabbit liver microsomal fractions.
    Golly I; Hlavica P
    Biochim Biophys Acta; 1987 Jun; 913(2):219-27. PubMed ID: 3109485
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.