BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

265 related articles for article (PubMed ID: 4146795)

  • 1. Regulation by cytidine nucleotides of the acylation of sn-(14C)glycerol 3-phosphate. Regional and subcellular distribution of the enzymes responsible for phosphatidic acid synthesis de novo in the central nervous system of the rat.
    Possmayer F; Meiners B; Mudd JB
    Biochem J; 1973 Mar; 132(3):381-94. PubMed ID: 4146795
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The regulation of sn-glycerol-3-phosphate acylation by cytidine nucleotides in rat brain cerebral hemispheres.
    Possmayer F; Mudd JB
    Biochim Biophys Acta; 1971 Jul; 239(2):217-33. PubMed ID: 4330332
    [No Abstract]   [Full Text] [Related]  

  • 3. Redundant systems of phosphatidic acid biosynthesis via acylation of glycerol-3-phosphate or dihydroxyacetone phosphate in the yeast Saccharomyces cerevisiae.
    Athenstaedt K; Weys S; Paltauf F; Daum G
    J Bacteriol; 1999 Mar; 181(5):1458-63. PubMed ID: 10049376
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Characteristics of mitochondrial and microsonal monoacyl- and diacylglycerol 3-phosphate biosynthesis in rabbit heart.
    Liu MS; Kako KJ
    Biochem J; 1974 Jan; 138(1):11-21. PubMed ID: 4840836
    [TBL] [Abstract][Full Text] [Related]  

  • 5. CMP-dependent incorporation of [14C]Glycerol 3-phosphate into phosphatidylglycerol and phosphatidylglycerol phosphate by rabbit lung microsomes.
    Bleasdale JE; Johnston JM
    Biochim Biophys Acta; 1982 Mar; 710(3):377-90. PubMed ID: 7074121
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Biogenesis of mitchondria. Phospholipid synthesis in vitro by yeast mitochondrial and microsomal fractions.
    Cobon GS; Crowfoot PD; Linnane AW
    Biochem J; 1974 Nov; 144(2):265-75. PubMed ID: 4618481
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [Acylation of sn-glycerol-3-phosphate by subcellular fractions of rat liver].
    Nachbaur J; Colbeau A; Vignais PM
    C R Acad Hebd Seances Acad Sci D; 1971 Feb; 272(7):1015-8. PubMed ID: 4324244
    [No Abstract]   [Full Text] [Related]  

  • 8. CDP-choline reversal of the CMP and CTP inhibition of phosphatidic acid synthesis by rat brain preparations.
    Possmayer F
    Biochem Biophys Res Commun; 1974 Dec; 61(4):1415-26. PubMed ID: 4376013
    [No Abstract]   [Full Text] [Related]  

  • 9. The isolation and subfractionation of plasma membrane from the cellular slime mould Dictyostelium discoideum.
    Green AA; Newell PC
    Biochem J; 1974 May; 140(2):313-22. PubMed ID: 4156170
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Biosynthesis of phosphatidic acid in mitochondria and microsomes via the acylation of sn-glycero-3-phosphate.
    Davidson JB; Stanacev NZ
    Can J Biochem; 1972 Aug; 50(8):936-48. PubMed ID: 4404137
    [No Abstract]   [Full Text] [Related]  

  • 11. The acylation of lysophosphatidylcholine by subcellular fractions of guinea-pig cerebral cortex.
    Fisher SK; Rowe CE
    Biochim Biophys Acta; 1980 May; 618(2):231-41. PubMed ID: 7378436
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Differences in the subcellular and subsynaptosomal distribution of the putative endoplasmic reticulum markers, NADPH-cytochrome c reductase, estrone sulfate sulfohydrolase and CDP-choline-diacylglycerol cholinephosphotransferase in rat brain.
    Possmayer F; Kleine L; Duwe G; Stewart-DeHaan PJ; Wong T; MacPherson CF; Harding PG
    J Neurochem; 1979 Mar; 32(3):889-906. PubMed ID: 219149
    [No Abstract]   [Full Text] [Related]  

  • 13. Synthesis of phospholipids in mitochondria and other membrane fractions of rabbit reticulocytes.
    Augustin W; Zborowski J; BaraƄska J; Wiswedel I; Wojtczak L
    Biochim Biophys Acta; 1977 Nov; 489(2):298-306. PubMed ID: 200274
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Isolation and partial characterization of rat brain synaptic plasma membranes.
    Gurd JW; Jones LR; Mahler HR; Moore WJ
    J Neurochem; 1974 Feb; 22(2):281-90. PubMed ID: 4364339
    [No Abstract]   [Full Text] [Related]  

  • 15. Can mitochondria and synaptosomes of guinea-pig brain synthesize phospholipids?
    Miller EK; Dawson RM
    Biochem J; 1972 Feb; 126(4):805-21. PubMed ID: 4342166
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Distribution of serine hydroxymethyltransferase and glycine transaminase in several areas of the central nervous system of the rat.
    Daly EC; Aprison MH
    J Neurochem; 1974 Jun; 22(6):877-85. PubMed ID: 4851413
    [No Abstract]   [Full Text] [Related]  

  • 17. The formation of phosphatidic acid de novo: a comparison of activities in neuronal nuclei and microsomes isolated from immature rabbit cerebral cortex.
    Baker RR; Chang HY
    Biochim Biophys Acta; 1988 Jun; 960(3):390-400. PubMed ID: 2454671
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Biosynthesis of retinal phospholipids: incorporation of radioactivity from labeled phosphorylcholine and cytidine diphosphate choline.
    Swartz JG; Mitchell JE
    J Lipid Res; 1970 Nov; 11(6):544-50. PubMed ID: 5504520
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Localization of peroxidase and other microsomal enzymes in thyroid cells.
    Hosoya T; Matsukawa S; Nagai Y
    Biochemistry; 1971 Aug; 10(16):3086-93. PubMed ID: 4399555
    [No Abstract]   [Full Text] [Related]  

  • 20. The acylation of sn-glycerol 3-phosphate and the metabolism of phosphatidate in microsomal preparations from the developing cotyledons of safflower (Carthamus tinctorius L.) seed.
    Griffiths G; Stobart AK; Stymne S
    Biochem J; 1985 Sep; 230(2):379-88. PubMed ID: 4052051
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.