These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
115 related articles for article (PubMed ID: 414683)
1. Utilization of benzylpenicillin as carbon, nitrogen and energy source by a Pseudomonas fluorescens strain. Johnsen J Arch Microbiol; 1977 Dec; 115(3):271-5. PubMed ID: 414683 [TBL] [Abstract][Full Text] [Related]
2. A novel degradative pathway of 2-nitrobenzoate via 3-hydroxyanthranilate in Pseudomonas fluorescens strain KU-7. Hasegawa Y; Muraki T; Tokuyama T; Iwaki H; Tatsuno M; Lau PC FEMS Microbiol Lett; 2000 Sep; 190(2):185-90. PubMed ID: 11034277 [TBL] [Abstract][Full Text] [Related]
3. Degradation of poly(3-hydroxyoctanoic acid) [P(3HO)] by bacteria: purification and properties of a P(3HO) depolymerase from Pseudomonas fluorescens GK13. Schirmer A; Jendrossek D; Schlegel HG Appl Environ Microbiol; 1993 Apr; 59(4):1220-7. PubMed ID: 8476295 [TBL] [Abstract][Full Text] [Related]
4. Simple assay and extraction of periplasmic penicillinase in Escherichia coli. Choma CT; Yamazaki H Can J Microbiol; 1981 May; 27(5):547-50. PubMed ID: 6166361 [TBL] [Abstract][Full Text] [Related]
5. Cephalosporinase and penicillinase activities of a beta-lactamase from Pseudomonas pyocyanea. Sabath LD; Jago M; Abraham EP Biochem J; 1965 Sep; 96(3):739-52. PubMed ID: 5862414 [TBL] [Abstract][Full Text] [Related]
6. Degradation of diarylethane structures by Pseudomonas fluorescens biovar I. González B; Olave I; Calderón I; Vicuña R Arch Microbiol; 1988; 149(5):389-94. PubMed ID: 3132905 [TBL] [Abstract][Full Text] [Related]
7. Pyrimidine ribonucleoside catabolism in Pseudomonas fluorescens biotype A. Chu CP; West TP Antonie Van Leeuwenhoek; 1990 May; 57(4):253-7. PubMed ID: 2112895 [TBL] [Abstract][Full Text] [Related]
8. Naphthalene uptake by a Pseudomonas fluorescens isolate. Whitman BE; Lueking DR; Mihelcic JR Can J Microbiol; 1998 Nov; 44(11):1086-93. PubMed ID: 10030003 [TBL] [Abstract][Full Text] [Related]
9. The effect of nitrogen and carbon sources on proteinase production by Pseudomonas fluorescens. Fairbairn DJ; Law BA J Appl Bacteriol; 1987 Feb; 62(2):105-13. PubMed ID: 3106298 [TBL] [Abstract][Full Text] [Related]
10. Metabolism and biochemical pathway of n-butyl benzyl phthalate by Pseudomonas fluorescens B-1 isolated from a mangrove sediment. Xu XR; Li HB; Gu JD Ecotoxicol Environ Saf; 2007 Nov; 68(3):379-85. PubMed ID: 17296224 [TBL] [Abstract][Full Text] [Related]
11. Carbon limitation induces sigma(S)-dependent gene expression in Pseudomonas fluorescens in soil. Koch B; Worm J; Jensen LE; Højberg O; Nybroe O Appl Environ Microbiol; 2001 Aug; 67(8):3363-70. PubMed ID: 11472905 [TBL] [Abstract][Full Text] [Related]
12. Synthesis of (beta-methyl-3H-)-benzylpenicillin and (beta-methyl-3H)-6-aminopenicillanic acid. Meesschaert B; Adriaens P; Eyssen H J Antibiot (Tokyo); 1976 Apr; 29(4):433-7. PubMed ID: 179970 [TBL] [Abstract][Full Text] [Related]
13. Studies on the degradation of pterine and pterine-6-carboxylic acid by Pseudomonas fluorescens UK-1. Soini J; Backman A Acta Chem Scand B; 1975; 29(6):710-4. PubMed ID: 811029 [TBL] [Abstract][Full Text] [Related]
14. [Strains of Pseudomonas fluorescens 3 and Arthrobacter sp. 2--degradation of polycyclic aromatic hydrocarbons]. Soroka IaM; Samoĭlenko LS; Gvozdiak PI Mikrobiol Z; 2001; 63(3):65-70. PubMed ID: 11785266 [TBL] [Abstract][Full Text] [Related]
15. Binding of beta-lactam antibiotics to the exocellular DD-carboxypeptidase-transpeptidase of Streptomyces R39. Frère JM; Ghuysen JM; Reynolds PE; Moreno R Biochem J; 1974 Oct; 143(1):241-9. PubMed ID: 4464853 [TBL] [Abstract][Full Text] [Related]
16. Cyanase-mediated utilization of cyanate in Pseudomonas fluorescens NCIB 11764. Kunz DA; Nagappan O Appl Environ Microbiol; 1989 Jan; 55(1):256-8. PubMed ID: 2495763 [TBL] [Abstract][Full Text] [Related]
17. Degradation and mineralization of 3-chlorobiphenyl by a mixed aerobic bacterial culture. Fava F; Marchetti L Appl Microbiol Biotechnol; 1991 Nov; 36(2):240-5. PubMed ID: 1368111 [TBL] [Abstract][Full Text] [Related]
18. Metabolism of volatile chlorinated aliphatic hydrocarbons by Pseudomonas fluorescens. Vandenbergh PA; Kunka BS Appl Environ Microbiol; 1988 Oct; 54(10):2578-9. PubMed ID: 3144246 [TBL] [Abstract][Full Text] [Related]
19. [Fluorene cometabolism by Rhodococcus rhodochrous and Pseudomonas fluorescens]. Baboshin MA; Finkel'shteĭn ZI; Golovleva LA Mikrobiologiia; 2003; 72(2):194-8. PubMed ID: 12751243 [TBL] [Abstract][Full Text] [Related]
20. Degradation of 3,4-dichloro- and 3,4-difluoroaniline by Pseudomonas fluorescens 26-K. Travkin VM; Solyanikova IP; Rietjens IM; Vervoort J; van Berkel WJ; Golovleva LA J Environ Sci Health B; 2003 Mar; 38(2):121-32. PubMed ID: 12617551 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]