BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

181 related articles for article (PubMed ID: 4147187)

  • 1. Immunochemical evidence for the participation of cytochrome b5 in microsomal stearyl-CoA desaturation reaction.
    Oshino N; Omura T
    Arch Biochem Biophys; 1973 Aug; 157(2):395-404. PubMed ID: 4147187
    [No Abstract]   [Full Text] [Related]  

  • 2. The dietary control of the microsomal stearyl CoA desaturation enzyme system in rat liver.
    Oshino N; Sato R
    Arch Biochem Biophys; 1972 Apr; 149(2):369-77. PubMed ID: 4146899
    [No Abstract]   [Full Text] [Related]  

  • 3. Role of cytochrome b5 in the NADH synergism of NADPH-dependent reactions of the cytochrome P-450 monooxygenase system of hepatic microsomes.
    Mannerign GJ
    Adv Exp Med Biol; 1975; 58(00):405-34. PubMed ID: 239543
    [No Abstract]   [Full Text] [Related]  

  • 4. The many roles of cytochrome b-5 in hepatic microsomes.
    Schenkman JB; Jansson I; Robie-Suh KM
    Life Sci; 1976 Sep; 19(5):611-23. PubMed ID: 8685
    [No Abstract]   [Full Text] [Related]  

  • 5. Immunochemical evidence for the participation of cytochrome b5 in the NADH synergism of the NADPH-dependent mono-oxidase system of hepatic microsomes.
    Mannering GJ; Kuwahara S; Omura T
    Biochem Biophys Res Commun; 1974 Mar; 57(2):476-81. PubMed ID: 4151403
    [No Abstract]   [Full Text] [Related]  

  • 6. Pyridine nucleotide-dependent electron transport in kidney cortex microsomes: interaction with desaturase and other microsomal mixed-function oxidases.
    Cinti DL; Montgomery MR
    Mol Pharmacol; 1977 Jan; 13(1):60-9. PubMed ID: 13295
    [No Abstract]   [Full Text] [Related]  

  • 7. Stearoyl-coenzyme A desaturase activity in Novikoff hepatoma.
    Prasad MR; Joshi VC
    Lipids; 1979 Apr; 14(4):413-5. PubMed ID: 35726
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Influences of substrates of different microsomal electron transfer pathways on the oxidation-reduction kinetics of microsomal cytochrome b5.
    Jansson I; Schenkman JB
    Arch Biochem Biophys; 1978 Jan; 185(1):251-61. PubMed ID: 23728
    [No Abstract]   [Full Text] [Related]  

  • 9. The binding of cytochrome b 5 to liver microsomes.
    Strittmatter P; Rogers MJ; Spatz L
    J Biol Chem; 1972 Nov; 247(22):7188-94. PubMed ID: 4404746
    [No Abstract]   [Full Text] [Related]  

  • 10. Liver microsomal electron transport systems. II. The involvement of cytochrome b5 in the NADH-dependent hydroxylation of 3,4-benzpyrene by a reconstituted cytochrome P-448-containing system.
    West SB; Levin W; Ryan D; Vore M; Lu AY
    Biochem Biophys Res Commun; 1974 May; 58(2):516-522. PubMed ID: 4366168
    [No Abstract]   [Full Text] [Related]  

  • 11. Mechanism of rat liver microsomal stearyl-CoA desaturase. Studies of the substrate specificity, enzyme-substrate interactions, and the function of lipid.
    Enoch HG; Catalá A; Strittmatter P
    J Biol Chem; 1976 Aug; 251(16):5095-103. PubMed ID: 8453
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Involvement of cytochrome b5 in the oxidative desaturation of linoleic acid to gamma-linolenic acid in rat liver microsomes.
    Okayasu T; Ono T; Shinojima K
    Lipids; 1977 Mar; 12(3):267-71. PubMed ID: 15177
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Stimulation of hepatic cytochrome b5-mediated lipid desaturation by renal microsomes.
    Cinti DL; Montgomery MR
    Life Sci; 1976 Jun; 18(11):1223-7. PubMed ID: 933713
    [No Abstract]   [Full Text] [Related]  

  • 14. Purification and properties of rat liver microsomal stearyl coenzyme A desaturase.
    Strittmatter P; Spatz L; Corcoran D; Rogers MJ; Setlow B; Redline R
    Proc Natl Acad Sci U S A; 1974 Nov; 71(11):4565-9. PubMed ID: 4373719
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A seasonal study of microsomal mixed-function oxidase components in insecticide-resistant and susceptible mosquitofish, Gambusia affinis.
    Chambers JE; Yarbrough JD
    Toxicol Appl Pharmacol; 1979 May; 48(3):497-507. PubMed ID: 473193
    [No Abstract]   [Full Text] [Related]  

  • 16. Discrimination between ascorbate:ferricytochrome b5 oxidoreductase and the cyanide-sensitive factor of acyl-CoA desaturase.
    Wolf B; Weis W
    Biochem Biophys Res Commun; 1976 Sep; 72(1):190-4. PubMed ID: 985466
    [No Abstract]   [Full Text] [Related]  

  • 17. The dynamic behavior during dietary induction of the terminal enzyme (cyanide-sensitive factor) of the stearyl CoA desaturation system of rat liver microsomes.
    Oshino N
    Arch Biochem Biophys; 1972 Apr; 149(2):378-87. PubMed ID: 4666110
    [No Abstract]   [Full Text] [Related]  

  • 18. Possible mechanism of coupled NADPH oxidase and P-450 monooxygenase action.
    Jansson I; Schenkman JB
    Adv Exp Med Biol; 1981; 136 Pt A():145-63. PubMed ID: 7344455
    [No Abstract]   [Full Text] [Related]  

  • 19. A comparison of some effects of dimethyl sulphoxide and dimethyl sulphone on rat liver microsomal enzymes.
    Stock BH; Fouts JR
    Biochem Pharmacol; 1971 Jul; 20(7):1525-36. PubMed ID: 4399524
    [No Abstract]   [Full Text] [Related]  

  • 20. Participation of L-ascorbate:ferricytochrome b5 oxidoreductase in ascorbate-dependent fatty acid desaturation of rat liver microsomes.
    Scherer G; Weis W
    Hoppe Seylers Z Physiol Chem; 1978 Nov; 359(11):1527-30. PubMed ID: 215500
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.