These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
22. Evidence for free radical generation due to NADH oxidation by aldehyde oxidase during ethanol metabolism. Mira L; Maia L; Barreira L; Manso CF Arch Biochem Biophys; 1995 Apr; 318(1):53-8. PubMed ID: 7726572 [TBL] [Abstract][Full Text] [Related]
23. Source of oxygen in the conversion of 2-tridecanone to undecyl acetate by Pseudomonas cepacia and Nocardia sp. Britton LN; Brand JM; Markovetz AJ Biochim Biophys Acta; 1974 Oct; 369(1):45-9. PubMed ID: 4153638 [No Abstract] [Full Text] [Related]
25. [Mechanism of glucose oxydation by a strain of Pseudomonas fluorescens (type R). II. Influence of Fe3+ ions on glucose dehydrogenase activity]. Wurtz B C R Seances Soc Biol Fil; 1973; 167(12):1960-64. PubMed ID: 4213924 [No Abstract] [Full Text] [Related]
26. Oxidation of formaldehyde and acetaldehyde by NAD+-dependent dehydrogenases in rat nasal mucosal homogenates. Casanova-Schmitz M; David RM; Heck HD Biochem Pharmacol; 1984 Apr; 33(7):1137-42. PubMed ID: 6477684 [TBL] [Abstract][Full Text] [Related]
28. Adaptative or constitutive nature of the enzymes involved in the oxidation of n-hexadecane into palmitic acid by Candida lipolytica. Nyns EJ; Auquière JP; Wiaux AL Z Allg Mikrobiol; 1969; 9(5):373-80. PubMed ID: 5382795 [No Abstract] [Full Text] [Related]
29. [Effect of formaldehyde on a Pseudomonas fluorescens strain]. Leonova VE; Teteriatnik AF; Karpukhin VF Mikrobiologiia; 1977; 46(4):750-4. PubMed ID: 409910 [TBL] [Abstract][Full Text] [Related]
31. The dissimilation of higher dicarboxylic acids by Pseudomonas fluorscens. Hoet PP; Stanier RY Eur J Biochem; 1970 Mar; 13(1):65-70. PubMed ID: 4314711 [No Abstract] [Full Text] [Related]
32. Degradation of protocatechuate in Pseudomonas testosteroni by a pathway involving oxidation of the product of meta-fission. Dennis DA; Chapman PJ; Dagley S J Bacteriol; 1973 Jan; 113(1):521-3. PubMed ID: 4143957 [TBL] [Abstract][Full Text] [Related]
34. Chlorophenol and chlorobenzoic acid co-metabolism by different genera of soil bacteria. Spokes JR; Walker N Arch Mikrobiol; 1974 Mar; 96(2):125-34. PubMed ID: 4836257 [No Abstract] [Full Text] [Related]
35. [Mechanism of glucose oxidation by a Pseudomonas fluorescens strain (type R). III. Influence of endogenous non-protein factors]. Wurtz B C R Seances Soc Biol Fil; 1975; 169(5):1303-9. PubMed ID: 131630 [TBL] [Abstract][Full Text] [Related]
36. Oxidation of tolualdehydes to toluic acids catalyzed by cytochrome P450-dependent aldehyde oxygenase in the mouse liver. Watanabe K; Matsunaga T; Yamamoto I; Yashimura H Drug Metab Dispos; 1995 Feb; 23(2):261-5. PubMed ID: 7736922 [TBL] [Abstract][Full Text] [Related]
37. Distribution of the enzymes oxidizing secondary and tertiary amines in Pseudomonas aminovorans grown on various substrates. Jarman TR; Large PJ J Gen Microbiol; 1972 Nov; 73(1):205-8. PubMed ID: 4653957 [No Abstract] [Full Text] [Related]
38. [Properties of a p-anisate-O-demethylase in cell-free extracts of Pseudomonas species]. Bernhardt FH; Staudinger H; Ullrich V Hoppe Seylers Z Physiol Chem; 1970 Apr; 351(4):467-78. PubMed ID: 4315370 [No Abstract] [Full Text] [Related]
39. Bacterial degradation of 4-hydroxyphenylacetic acid and homoprotocatechuic acid. Sparnins VL; Chapman PJ; Dagley S J Bacteriol; 1974 Oct; 120(1):159-67. PubMed ID: 4420192 [TBL] [Abstract][Full Text] [Related]
40. The mechanisms of nitrogen assimilation in pseudomonads. Brown CM; Macdonald-Brown DS; Stanley SO Antonie Van Leeuwenhoek; 1973; 39(1):89-98. PubMed ID: 4144177 [No Abstract] [Full Text] [Related] [Previous] [Next] [New Search]