These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

131 related articles for article (PubMed ID: 414780)

  • 1. Alteration by cereolysin of the structure of cholesterol-containing membranes.
    Cowell JL; Kim KS; Bernheimer AW
    Biochim Biophys Acta; 1978 Feb; 507(2):230-41. PubMed ID: 414780
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Alteration of human erythrocyte plasma membranes by perfringolysin O as revealed by freeze-fracture electron microscopy. Studies on Clostridium perfringens exotoxins V.
    Mitsui K; Sekiya T; Nozawa Y; Hase J
    Biochim Biophys Acta; 1979 Jun; 554(1):68-75. PubMed ID: 222322
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effect of streptolysin O on erythrocyte membranes, liposomes, and lipid dispersions. A protein-cholesterol interaction.
    Duncan JL; Schlegel R
    J Cell Biol; 1975 Oct; 67(1):160-74. PubMed ID: 1176529
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Membrane ultrastructural changes during calcium phosphate-induced fusion of human erythrocyte ghosts.
    Zakai N; Kulka RG; Loyter A
    Proc Natl Acad Sci U S A; 1977 Jun; 74(6):2417-21. PubMed ID: 329283
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A ring-shaped structure with a crown formed by streptolysin O on the erythrocyte membrane.
    Sekiya K; Satoh R; Danbara H; Futaesaku Y
    J Bacteriol; 1993 Sep; 175(18):5953-61. PubMed ID: 8376341
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Role of cholesterol in the action of cereolysin on membranes.
    Cowell JL; Bernheimer AW
    Arch Biochem Biophys; 1978 Oct; 190(2):603-10. PubMed ID: 102256
    [No Abstract]   [Full Text] [Related]  

  • 7. Interaction of Clostridium perfringens theta-haemolysin, a contaminant of commercial phospholipase C, with erythrocyte ghost membranes and lipid dispersions. A morphological study.
    Smyth CJ; Freer JH; Arbuthnott JP
    Biochim Biophys Acta; 1975 Apr; 382(4):479-93. PubMed ID: 164911
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Structure and thermotropic phase behaviour of detergent-resistant membrane raft fractions isolated from human and ruminant erythrocytes.
    Quinn PJ; Tessier C; Rainteau D; Koumanov KS; Wolf C
    Biochim Biophys Acta; 2005 Jul; 1713(1):5-14. PubMed ID: 15963456
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mechanism of membrane damage by streptolysin-O.
    Bhakdi S; Tranum-Jensen J; Sziegoleit A
    Infect Immun; 1985 Jan; 47(1):52-60. PubMed ID: 3880730
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Freeze-fracture identification of sterol-digitonin complexes in cell and liposome membranes.
    Elias PM; Goerke J; Friend DS; Brown BE
    J Cell Biol; 1978 Aug; 78(2):577-96. PubMed ID: 690180
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Patterns of filipin-sterol complex distribution in intact erythrocytes and intramembrane particle-aggregated ghost membranes.
    Brown D; Montesano R; Orci L
    J Histochem Cytochem; 1982 Jul; 30(7):702-6. PubMed ID: 7108195
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effects of amphotericin B and its methyl ester on plasma membranes of Candida albicans and erythrocytes as examined by freeze-fracture electron microscopy.
    Sekiya T; Yano K; Nozawa Y
    Sabouraudia; 1982 Dec; 20(4):303-11. PubMed ID: 6760418
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Freeze-fracture ultrastructural alterations induced by filipin, pimaricin, nystatin and amphotericin B in the plasmia membranes of Epidermophyton, Saccharomyces and red complex-induced membrane lesions.
    Kitajima Y; Sekiya T; Nozawa Y
    Biochim Biophys Acta; 1976 Dec; 455(2):452-65. PubMed ID: 793632
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The effect of cholesterol and other intercalated amphipaths on the contour and stability of the isolated red cell membrane.
    Lange Y; Cutler HB; Steck TL
    J Biol Chem; 1980 Oct; 255(19):9331-7. PubMed ID: 7410427
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Freeze-etching and biochemical analysis of human fetal erythrocyte membranes.
    Kurantsin-Mills J; Lessin LS
    Pediatr Res; 1984 Oct; 18(10):1035-41. PubMed ID: 6493847
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Detection of cholesterol in cell membranes by use of bacterial toxins.
    Pendleton IR; Kim KS; Bernheimer AW
    J Bacteriol; 1972 May; 110(2):722-30. PubMed ID: 4623312
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Dynamics of the holes in human erythrocyte membrane ghosts.
    Lieber MR; Steck TL
    J Biol Chem; 1982 Oct; 257(19):11660-6. PubMed ID: 6811585
    [No Abstract]   [Full Text] [Related]  

  • 18. Ultrastructure of hemoglobin-depleted human erythrocyte resealed ghosts.
    Ting-Beall HP; Costello MJ; Shoemaker D; Holland VF
    Biochim Biophys Acta; 1981 Feb; 640(3):807-11. PubMed ID: 7213706
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Alteration of mammalian membranes by the cooperative and antagonistic actions of bacterial proteins.
    Linder R
    Biochim Biophys Acta; 1984 Dec; 779(4):423-35. PubMed ID: 6391548
    [No Abstract]   [Full Text] [Related]  

  • 20. Protease-nicked theta-toxin of Clostridium perfringens, a new membrane probe with no cytolytic effect, reveals two classes of cholesterol as toxin-binding sites on sheep erythrocytes.
    Ohno-Iwashita Y; Iwamoto M; Mitsui K; Ando S; Nagai Y
    Eur J Biochem; 1988 Sep; 176(1):95-101. PubMed ID: 2901352
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.