BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

111 related articles for article (PubMed ID: 414787)

  • 1. Coenzyme M and methylcobalamin in methane biosynthesis: results of model studies.
    Schrauzer GN; Grate JH; Katz RN
    Bioinorg Chem; 1978; 8(1):1-10. PubMed ID: 414787
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Stimulation of CO2 reduction to methane by methylcoenzyme M in extracts Methanobacterium.
    Gunsalus RP; Wolfe RS
    Biochem Biophys Res Commun; 1977 Jun; 76(3):790-5. PubMed ID: 409394
    [No Abstract]   [Full Text] [Related]  

  • 3. Methane formation from methyl-coenzyme M in a system containing methyl-coenzyme M reductase, component B and reduced cobalamin.
    Ankel-Fuchs D; Thauer RK
    Eur J Biochem; 1986 Apr; 156(1):171-7. PubMed ID: 3082633
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Evidence that the heterodisulfide of coenzyme M and 7-mercaptoheptanoylthreonine phosphate is a product of the methylreductase reaction in Methanobacterium.
    Bobik TA; Olson KD; Noll KM; Wolfe RS
    Biochem Biophys Res Commun; 1987 Dec; 149(2):455-60. PubMed ID: 3122735
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Interaction of coenzyme M and formaldehyde in methanogenesis.
    Romesser JA; Wolfe RS
    Biochem J; 1981 Sep; 197(3):565-71. PubMed ID: 6798970
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Preparation of coenzyme M analogues and their activity in the methyl coenzyme M reductase system of Methanobacterium thermoautotrophicum.
    Gunsalus RP; Romesser JA; Wolfe RS
    Biochemistry; 1978 Jun; 17(12):2374-7. PubMed ID: 98178
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Substrate analogues as mechanistic probes of methyl-S-coenzyme M reductase.
    Wackett LP; Honek JF; Begley TP; Wallace V; Orme-Johnson WH; Walsh CT
    Biochemistry; 1987 Sep; 26(19):6012-8. PubMed ID: 3120769
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The role of tetrahydromethanopterin and cytoplasmic cofactor in methane synthesis.
    Sauer FD; Blackwell BA; Mahadevan S
    Biochem J; 1986 Apr; 235(2):453-8. PubMed ID: 3091008
    [TBL] [Abstract][Full Text] [Related]  

  • 9. On the role of N-7-mercaptoheptanoyl-O-phospho-L-threonine (component B) in the enzymatic reduction of methyl-coenzyme M to methane.
    Ellermann J; Kobelt A; Pfaltz A; Thauer RK
    FEBS Lett; 1987 Aug; 220(2):358-62. PubMed ID: 3111890
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Physiological importance of the heterodisulfide of coenzyme M and 7-mercaptoheptanoylthreonine phosphate in the reduction of carbon dioxide to methane in Methanobacterium.
    Bobik TA; Wolfe RS
    Proc Natl Acad Sci U S A; 1988 Jan; 85(1):60-3. PubMed ID: 3124103
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Coupling of methyl coenzyme M reduction with carbon dioxide activation in extracts of Methanobacterium thermoautotrophicum.
    Romesser JA; Wolfe RS
    J Bacteriol; 1982 Nov; 152(2):840-7. PubMed ID: 6813316
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Reductive activation of the methyl coenzyme M methylreductase system of Methanobacterium thermoautotrophicum delta H.
    Rouvière PE; Bobik TA; Wolfe RS
    J Bacteriol; 1988 Sep; 170(9):3946-52. PubMed ID: 3137210
    [TBL] [Abstract][Full Text] [Related]  

  • 13. 7-Mercaptoheptanoylthreonine phosphate functions as component B in ATP-independent methane formation from methyl-CoM with reduced cobalamin as electron donor.
    Ankel-Fuchs D; Böcher R; Thauer RK; Noll KM; Wolfe RS
    FEBS Lett; 1987 Mar; 213(1):123-7. PubMed ID: 3104083
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The role of 7-mercaptoheptanoylthreonine phosphate in the methylcoenzyme M methylreductase system from Methanobacterium thermoautotrophicum.
    Noll KM; Wolfe RS
    Biochem Biophys Res Commun; 1987 May; 145(1):204-10. PubMed ID: 3109409
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Identification of methyl coenzyme M as an intermediate in methanogenesis from acetate in Methanosarcina spp.
    Lovley DR; White RH; Ferry JG
    J Bacteriol; 1984 Nov; 160(2):521-5. PubMed ID: 6438056
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Component A of the methyl coenzyme M methylreductase system of Methanobacterium: resolution into four components.
    Nagle DP; Wolfe RS
    Proc Natl Acad Sci U S A; 1983 Apr; 80(8):2151-5. PubMed ID: 6403944
    [TBL] [Abstract][Full Text] [Related]  

  • 17. New approach to the cultivation of methanogenic bacteria: 2-mercaptoethanesulfonic acid (HS-CoM)-dependent growth of Methanobacterium ruminantium in a pressureized atmosphere.
    Balch WE; Wolfe RS
    Appl Environ Microbiol; 1976 Dec; 32(6):781-91. PubMed ID: 827241
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Transport of coenzyme M (2-mercaptoethanesulfonic acid) in Methanobacterium ruminantium.
    Balch WE; Wolfe RS
    J Bacteriol; 1979 Jan; 137(1):264-73. PubMed ID: 33148
    [TBL] [Abstract][Full Text] [Related]  

  • 19. In vitro methane and methyl coenzyme M formation from acetate: evidence that acetyl-CoA is the required intermediate activated form of acetate.
    Grahame DA; Stadtman TC
    Biochem Biophys Res Commun; 1987 Aug; 147(1):254-8. PubMed ID: 3115259
    [TBL] [Abstract][Full Text] [Related]  

  • 20. In vitro methanol production from methyl coenzyme M using the Methanosarcina barkeri MtaABC protein complex.
    Dong M; Gonzalez TD; Klems MM; Steinberg LM; Chen W; Papoutsakis ET; Bahnson BJ
    Biotechnol Prog; 2017 Sep; 33(5):1243-1249. PubMed ID: 28556629
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.