These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

111 related articles for article (PubMed ID: 414787)

  • 21. Properties of the two isoenzymes of methyl-coenzyme M reductase in Methanobacterium thermoautotrophicum.
    Bonacker LG; Baudner S; Mörschel E; Böcher R; Thauer RK
    Eur J Biochem; 1993 Oct; 217(2):587-95. PubMed ID: 8223602
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Nutritional and biochemical characterization of Methanospirillum hungatii.
    Ferry JG; Wolfe RS
    Appl Environ Microbiol; 1977 Oct; 34(4):371-6. PubMed ID: 411420
    [TBL] [Abstract][Full Text] [Related]  

  • 23. [Effect of ATP, ADP and AMP on the formation of methane from methylcobalamin by cell-free extracts of Methanobacillus kuzneceovii].
    Pantskhava ES; Bukin VN
    Dokl Akad Nauk SSSR; 1972 Sep; 206(2):494-6. PubMed ID: 4634389
    [No Abstract]   [Full Text] [Related]  

  • 24. Coenzyme M derivatives and their effects on methane formation from carbon dioxide and methanol by cell extracts of Methanosarcina barkeri.
    Hutten TJ; De Jong MH; Peeters BP; van der Drift C; Vogels GD
    J Bacteriol; 1981 Jan; 145(1):27-34. PubMed ID: 6780512
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Inorganic pyrophosphate synthesis during methanogenesis from methylcoenzyme M by cell-free extracts of Methanobacterium thermoautotrophicum (strain delta H).
    Keltjens JT; van Erp R; Mooijaart RJ; van der Drift C; Vogels GD
    Eur J Biochem; 1988 Mar; 172(2):471-6. PubMed ID: 2832165
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Methyl-coenzyme M, an intermediate in methanogenic dissimilation of C1 compounds by Methanosarcina barkeri.
    Shapiro S; Wolfe RS
    J Bacteriol; 1980 Feb; 141(2):728-34. PubMed ID: 6444945
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Incorporation of coenzyme M into component C of methylcoenzyme M methylreductase during in vitro methanogenesis.
    Hartzell PL; Donnelly MI; Wolfe RS
    J Biol Chem; 1987 Apr; 262(12):5581-6. PubMed ID: 3106338
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Methane production by the membranous fraction of Methanobacterium thermoautotrophicum.
    Sauer FD; Erfle JD; Mahadevan S
    Biochem J; 1980 Jul; 190(1):177-82. PubMed ID: 6778475
    [TBL] [Abstract][Full Text] [Related]  

  • 29. N5-methyltetrahydromethanopterin:coenzyme M methyltransferase from Methanobacterium thermoautotrophicum. Catalytic mechanism and sodium ion dependence.
    Gärtner P; Weiss DS; Harms U; Thauer RK
    Eur J Biochem; 1994 Dec; 226(2):465-72. PubMed ID: 8001564
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Methyl-coenzyme M reductase from methanogenic archaea: isotope effects on the formation and anaerobic oxidation of methane.
    Scheller S; Goenrich M; Thauer RK; Jaun B
    J Am Chem Soc; 2013 Oct; 135(40):14975-84. PubMed ID: 24004388
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Is coenzyme M bound to factor F430 in methanogenic bacteria? Experiments with Methanobrevibacter ruminantium.
    Hüster R; Gilles HH; Thauer RK
    Eur J Biochem; 1985 Apr; 148(1):107-11. PubMed ID: 3920049
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Influence of sulfide compounds on the metabolism of Methanobacterium strain AZ.
    Wellinger A; Wuhrmann K
    Arch Microbiol; 1977 Oct; 115(1):13-7. PubMed ID: 412476
    [TBL] [Abstract][Full Text] [Related]  

  • 33. The cobalamin product of the conversion of methylcobalamin to CH4 by extracts of methanobacillus omelianskii.
    Wolin MJ; Wolin EA; Wolfe RS
    Biochem Biophys Res Commun; 1964 Apr; 15(5):420-3. PubMed ID: 5827787
    [No Abstract]   [Full Text] [Related]  

  • 34. Formaldehyde oxidation and methanogenesis.
    Escalante-Semerena JC; Wolfe RS
    J Bacteriol; 1984 May; 158(2):721-6. PubMed ID: 6427185
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Structural modifications and kinetic studies of the substrates involved in the final step of methane formation in Methanobacterium thermoautotrophicum.
    Olson KD; Chmurkowska-Cichowlas L; McMahon CW; Wolfe RS
    J Bacteriol; 1992 Feb; 174(3):1007-12. PubMed ID: 1732190
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Characterization of bromoethanesulfonate-resistant mutants of Methanococcus voltae: evidence of a coenzyme M transport system.
    Santoro N; Konisky J
    J Bacteriol; 1987 Feb; 169(2):660-5. PubMed ID: 3027043
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Probing the reactivity of Ni in the active site of methyl-coenzyme M reductase with substrate analogues.
    Goenrich M; Mahlert F; Duin EC; Bauer C; Jaun B; Thauer RK
    J Biol Inorg Chem; 2004 Sep; 9(6):691-705. PubMed ID: 15365904
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Coenzyme B induced coordination of coenzyme M via its thiol group to Ni(I) of F430 in active methyl-coenzyme M reductase.
    Finazzo C; Harmer J; Bauer C; Jaun B; Duin EC; Mahlert F; Goenrich M; Thauer RK; Van Doorslaer S; Schweiger A
    J Am Chem Soc; 2003 Apr; 125(17):4988-9. PubMed ID: 12708843
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Components required for the formation of CH-4 from methylcobalamin by extracts of Methanobacillus omelianskii.
    Wood JM; Wolfe RS
    J Bacteriol; 1966 Sep; 92(3):696-700. PubMed ID: 4288494
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Enzymatic and nonenzymatic demethylation of methylcobalamin and of abiogenic cobaloxime model substrates. Methane biosynthesis by Methanobacillus omelianskii.
    Sibert JW; Schrauzer GN
    J Am Chem Soc; 1970 Mar; 92(5):1421-3. PubMed ID: 5414751
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.