These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

50 related articles for article (PubMed ID: 4147915)

  • 1. Redox potential in caecal contents of the rat and azo reduction of salicyl-azo-sulphapyridine.
    Schröder H; Johansson AK
    Xenobiotica; 1973 Apr; 3(4):233-46. PubMed ID: 4147915
    [No Abstract]   [Full Text] [Related]  

  • 2. Azo reduction of salicyl-azo-sulphapyridine in germ-free and conventional rats.
    Schröder H; Gustafsson BE
    Xenobiotica; 1973 Apr; 3(4):225-31. PubMed ID: 4147914
    [No Abstract]   [Full Text] [Related]  

  • 3. In vitro metabolic N-oxidation of azo compounds. II. Some factors influencing N-oxidation.
    Koh MH; Gorrod JW
    Drug Metabol Drug Interact; 1989; 7(4):273-85. PubMed ID: 2489198
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Metronidazole (Flagyl): degradation by the intestinal flora.
    Searle AJ; Willson RL
    Xenobiotica; 1976 Aug; 6(8):457-64. PubMed ID: 10686
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The role of intestinal bacteria in the metabolism of salicylazosulfapyridine.
    Peppercorn MA; Goldman P
    J Pharmacol Exp Ther; 1972 Jun; 181(3):555-62. PubMed ID: 4402374
    [No Abstract]   [Full Text] [Related]  

  • 6. Azo reduction of sulphasalazine in healthy volunteers.
    Houston JB; Day J; Walker J
    Br J Clin Pharmacol; 1982 Sep; 14(3):395-8. PubMed ID: 6127096
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Comparative azo reductase activity of red azo dyes through caecal and hepatic microsomal fraction in rats.
    Singh S; Das M; Khanna SK
    Indian J Exp Biol; 1997 Sep; 35(9):1016-8. PubMed ID: 9475082
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cholestyramine-induced inhibition of salicylazosulfapyridine (sulfasalazine) metabolism by rat intestinal microflora.
    Pieniaszek HJ; Bates TR
    J Pharmacol Exp Ther; 1976 Jul; 198(1):240-5. PubMed ID: 6792
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Some molecular parameters influencing rate of reduction of azo compounds by intestinal microflora.
    Walker R; Ryan AJ
    Xenobiotica; 1971; 1(4):483-6. PubMed ID: 5006111
    [No Abstract]   [Full Text] [Related]  

  • 10. The metabolism of N-benzyl-4-substituted anilines: factors influencing in vitro C- and N-oxidation.
    Gorrod JW; Gooderham NJ
    Xenobiotica; 1987 Feb; 17(2):165-77. PubMed ID: 3564532
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [Mucolytic activity in the cecum of the mouse, rat, golden hamster, guinea pig and rabbit].
    Juhr NC; Haas A
    Z Versuchstierkd; 1976; 18(4):206-15. PubMed ID: 1274484
    [No Abstract]   [Full Text] [Related]  

  • 12. Reduction of sulphonated water-soluble azo dyes by caecal microorganisms from the rat.
    Larsen JC; Meyer T; Scheline RR
    Acta Pharmacol Toxicol (Copenh); 1976 Apr; 38(4):353-7. PubMed ID: 946733
    [No Abstract]   [Full Text] [Related]  

  • 13. Oro-caecal transit time in man assessed by the sulfasalazine/sulfapyridine test. Correlation between plasma-saliva appearance of sulfapyridine.
    Dhôte R; Leglise P; Bergmann JF; Conort O; Caulin C
    Fundam Clin Pharmacol; 1992; 6(8-9):383-5. PubMed ID: 1363408
    [No Abstract]   [Full Text] [Related]  

  • 14. Some factors involved in the N-oxidation of 3-substituted pyridines by microsomal preparations in vitro.
    Gorrod JW; Damani LA
    Xenobiotica; 1979 Apr; 9(4):209-18. PubMed ID: 483857
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Studies on pharmacokinetics of 9 -fluorohydrocortisone in the rat, guinea pig and dog].
    Wenzl H; Garbe A; Nowak H
    Arzneimittelforschung; 1971 Aug; 21(8):Suppl:1115-22. PubMed ID: 5109326
    [No Abstract]   [Full Text] [Related]  

  • 16. Metabolism as a determinant of species susceptibility to 2,3,5-(triglutathion-S-yl)hydroquinone-mediated nephrotoxicity. The role of N-acetylation and N-deacetylation.
    Lau SS; Kleiner HE; Monks TJ
    Drug Metab Dispos; 1995 Oct; 23(10):1136-42. PubMed ID: 8654203
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Species differences in enantioselective 2-oxidations of RS-8359, a selective and reversible MAO-A inhibitor, and cinchona alkaloids by aldehyde oxidase.
    Itoh K; Yamamura M; Takasaki W; Sasaki T; Masubuchi A; Tanaka Y
    Biopharm Drug Dispos; 2006 Apr; 27(3):133-9. PubMed ID: 16400710
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Acetylator phenotype and adverse effects of sulphasalazine in healthy subjects.
    Schröder H; Evans DA
    Gut; 1972 Apr; 13(4):278-84. PubMed ID: 4402420
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Degradation of insulin and calcitonin and their protection by various protease inhibitors in rat caecal contents: implications in peptide delivery to the colon.
    Tozaki H; Emi Y; Horisaka E; Fujita T; Yamamoto A; Muranishi S
    J Pharm Pharmacol; 1997 Feb; 49(2):164-8. PubMed ID: 9055189
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The reduction of sulphinpyrazone and sulindac by intestinal bacteria.
    Strong HA; Renwick AG; George CF; Liu YF; Hill MJ
    Xenobiotica; 1987 Jun; 17(6):685-96. PubMed ID: 3630204
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 3.